Recent Results on the Irregularity and the Mostar Index of Graphs

Dieter Rautenbach

Universität Ulm

Joint with Štefko Miklavič, Johannes Pardey, Florian Werner

Recent Results on the Irregularity and the Mostar Index of Graphs

Dieter Rautenbach

Universität Ulm

Joint with Štefko Miklavič, Johannes Pardey, Florian Werner, and Michael Henning

Mostar index

Journal of Mathematical Chemistry (2018) 56:2995-3013
https://doi.org/10.1007/s10910-018-0928-z

ORIGINAL PAPER

Mostar index

Tomislav Došlić ${ }^{1} \cdot$ Ivica Martinjak ${ }^{2}$ • Riste Škrekovski ${ }^{3,4,5}$. Sanja Tipurić Spužević ${ }^{6}$ • Ivana Zubac ${ }^{7}$

Received: 25 April 2018 / Accepted: 19 June 2018 / Published online: 26 June 2018
© Springer International Publishing AG, part of Springer Nature 2018

Mostar index

The Mostar index $\operatorname{Mo}(G)$ of a graph G is

$$
M o(G)=\sum_{u v \in E(G)}\left|n_{G}(u, v)-n_{G}(v, u)\right|
$$

where, for an edge $u v$ of G,
$n_{G}(u, v)$ is the number of vertices of G with smaller distance in G to u than to v, that is,

$$
n_{G}(u, v)=\left|\left\{w \in V(G): \operatorname{dist}_{G}(u, w)<\operatorname{dist}_{G}(v, w)\right\}\right| .
$$

Mostar index

The Mostar index $\operatorname{Mo}(G)$ of a graph G is

$$
\operatorname{Mo}(G)=\sum_{u v \in E(G)}\left|n_{G}(u, v)-n_{G}(v, u)\right|
$$

where, for an edge $u v$ of G,
$n_{G}(u, v)$ is the number of vertices of G with smaller distance in G to u than to v, that is,

$$
n_{G}(u, v)=\left|\left\{w \in V(G): \operatorname{dist}_{G}(u, w)<\operatorname{dist}_{G}(v, w)\right\}\right| .
$$

- Since $\left|n_{G}(u, v)-n_{G}(v, u)\right| \leq(n-1)-1=n-2$, we have

$$
M o(G) \leq m(n-2)<0.5 n^{3}
$$

Mostar index

The Mostar index $\operatorname{Mo}(G)$ of a graph G is

$$
\operatorname{Mo}(G)=\sum_{u v \in E(G)}\left|n_{G}(u, v)-n_{G}(v, u)\right|
$$

where, for an edge $u v$ of G,
$n_{G}(u, v)$ is the number of vertices of G with smaller distance in G to u than to v, that is,

$$
n_{G}(u, v)=\left|\left\{w \in V(G): \operatorname{dist}_{G}(u, w)<\operatorname{dist}_{G}(v, w)\right\}\right| .
$$

- Since $\left|n_{G}(u, v)-n_{G}(v, u)\right| \leq(n-1)-1=n-2$, we have

$$
M o(G) \leq m(n-2)<0.5 n^{3}
$$

- G is distance-balanced if $n_{G}(u, v)=n_{G}(v, u)$ for every edge $u v$ of G.

Mostar index

Applied Mathematics and Computation 404 (2021) 126245

	Contents lists available at ScienceDirect Applied Mathematics and Computation	

Mostar index: Results and perspectives

Akbar Ali ${ }^{\text {a }}$, Tomislav Došlić ${ }^{\text {b,* }}$
a Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
${ }^{\mathrm{b}}$ Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

ARTICLE INFO

Article history:

Received 14 December 2020
Revised 25 March 2021
Accepted 27 March 2021
Available online 13 April 2021

MSC:
 05 C 09
 05C12

05 C 92

ABSTRACT

The Mostar index is a recently introduced bond-additive distance-based graph invariant that measures the degree of peripherality of particular edges and of the graph as a whole. It attracted considerable attention, both in the context of complex networks and in more classical applications of chemical graph theory, where it turned out to be useful as a measure of the total surface area of octane isomers and as a tool for studying topological aspects of fullerene shapes. This paper aims to gather some known bounds and extremal results concerning the Mostar index. Also, it presents various modifications and generalizations of the aforementioned index and it outlines several possible directions of further research. Finally, some open problems and conjectures are listed.

Relation to the Wiener index

The Wiener index $W(G)$ of a graph G [Wiener 1947] is

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{u \in V(G)}\left(\sum_{v \in V(G)} \operatorname{dist}_{G}(u, v)\right) \\
& =\frac{1}{2} \sum_{u \in V(G)} \sigma_{G}(u) .
\end{aligned}
$$

Relation to the Wiener index

The Wiener index $W(G)$ of a graph G [Wiener 1947] is

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{u \in V(G)}\left(\sum_{v \in V(G)} \operatorname{dist}_{G}(u, v)\right) \\
& =\frac{1}{2} \sum_{u \in V(G)} \sigma_{G}(u) .
\end{aligned}
$$

Since

$$
\left|n_{G}(u, v)-n_{G}(v, u)\right|=\left|\sigma_{G}(u)-\sigma_{G}(v)\right| \text { for every edge } u v \text { of } G,
$$

we have

$$
\operatorname{Mo}(G)=\sum_{u v \in E(G)}\left|\sigma_{G}(u)-\sigma_{G}(v)\right| .
$$

Relation to the irregularity

The irregularity $\operatorname{irr}(G)$ of a graph G [Albertson 1997] is

$$
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right| .
$$

Relation to the irregularity
The irregularity $\operatorname{irr}(G)$ of a graph G [Albertson 1997] is

$$
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right| .
$$

If $\operatorname{diam}(G) \leq 2$, then

$$
\begin{aligned}
\left|n_{G}(u, v)-n_{G}(v, u)\right| & =|(a+1)-(c+1)| \\
& =|(a+b+1)-(b+c+1)| \\
& =\left|d_{G}(u)-d_{G}(v)\right|
\end{aligned}
$$

and, hence,

$$
M o(G)=\operatorname{irr}(G)
$$

Two conjectures from [Doslic et al. 2018]

5.2 Conjectures and open problems

For the beginning, it would be interesting to investigate how the results of papers concerned with distance-balanced graphs extend to the case $\operatorname{Mo}(G) \neq 0$.

We have already mentioned that $\operatorname{Mo}\left(K_{\lfloor n / 3\rfloor,\lceil 2 n / 3\rceil}\right) \sim 2 n^{3} / 27 \in \Theta\left(n^{3}\right)$. We believe that this is the extremal graph among all bipartite graphs on the same number of vertices.

Conjecture 19 Among bipartite graphs on n vertices $K_{n / 3,2 n / 3}$ has the maximal Mostar index.

For general graphs, the extremal graph is most likely the split graph with the same parameters. The split graph $S_{m, n}$ is obtained by taking a complete graph K_{m} on m vertices and n isolated vertices $\overline{K_{n}}$ and connecting every isolated vertex to all vertices of K_{m}. A split graph is a join of a complete graph and the complement of another complete graph.

Conjecture 20 Among all graphs on n vertices the split graph $S_{n / 3,2 n / 3}$ has the maximal Mostar index.

Two conjectures from [Doslic et al. 2018]
As observed by Geneson and Tsai [2021], for $\alpha \leq \frac{1}{2}$,

$$
\operatorname{Mo}\left(K_{\alpha n,(1-\alpha) n}\right)=\alpha n(1-\alpha) n(1-2 \alpha) n=\alpha(1-\alpha)(1-2 \alpha) n^{3}
$$

and

$$
\underset{\alpha}{\operatorname{argmax}} \alpha(1-\alpha)(1-2 \alpha)=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right)=: \alpha^{\star} \approx 0.21132 .
$$

Two conjectures from [Doslic et al. 2018]

As observed by Geneson and Tsai [2021], for $\alpha \leq \frac{1}{2}$,

$$
\operatorname{Mo}\left(K_{\alpha n,(1-\alpha) n}\right)=\alpha n(1-\alpha) n(1-2 \alpha) n=\alpha(1-\alpha)(1-2 \alpha) n^{3}
$$

and

$$
\underset{\alpha}{\operatorname{argmax}} \alpha(1-\alpha)(1-2 \alpha)=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right)=: \alpha^{\star} \approx 0.21132 .
$$

Hence, at least for large n,

$$
M o\left(K_{0.211 \ldots n, 0.789 \ldots n}\right)>\operatorname{Mo}\left(K_{0 . \overline{3} n, 0 . \overline{6} n}\right),
$$

and Conjecture 19 cannot hold as stated.

Two conjectures from [Doslic et al. 2018]
As observed by Geneson and Tsai [2021], for $\alpha \leq \frac{1}{2}$,

$$
\operatorname{Mo}\left(K_{\alpha n,(1-\alpha) n}\right)=\alpha n(1-\alpha) n(1-2 \alpha) n=\alpha(1-\alpha)(1-2 \alpha) n^{3}
$$

and

$$
\underset{\alpha}{\operatorname{argmax}} \alpha(1-\alpha)(1-2 \alpha)=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right)=: \alpha^{\star} \approx 0.21132 .
$$

Hence, at least for large n,

$$
\operatorname{Mo}\left(K_{0.211 \ldots n, 0.789 \ldots n}\right)>\operatorname{Mo}\left(K_{0 . \overline{3} n, 0 . \overline{6} n}\right)
$$

and Conjecture 19 cannot hold as stated.
Albertson [1997] showed

$$
\operatorname{irr}(G) \leq \frac{4}{27} n^{3},
$$

which implies Conjecture 20 up to $O\left(n^{2}\right)$ provided that $\operatorname{diam}(G) \leq 2$.

Bipartite graphs

Theorem (MPRW 2022)

If G is a bipartite graph of order n, then

$$
\operatorname{Mo}(G) \leq \alpha^{\star}\left(1-\alpha^{\star}\right)\left(1-2 \alpha^{\star}\right) n^{3}=\frac{\sqrt{3}}{18} n^{3} \approx 0.096225 n^{3}
$$

Bipartite graphs

Theorem (MPRW 2022)

If G is a bipartite graph of order n, then

$$
\operatorname{Mo}(G) \leq \alpha^{\star}\left(1-\alpha^{\star}\right)\left(1-2 \alpha^{\star}\right) n^{3}=\frac{\sqrt{3}}{18} n^{3} \approx 0.096225 n^{3}
$$

This implies Conjecture 19 up to $O\left(n^{2}\right)$ due to integrality problems: $\alpha^{\star} n \notin \mathbb{N}$.

Bipartite graphs

Theorem (MPRW 2022)

If G is a bipartite graph of order n, then

$$
\operatorname{Mo}(G) \leq \alpha^{\star}\left(1-\alpha^{\star}\right)\left(1-2 \alpha^{\star}\right) n^{3}=\frac{\sqrt{3}}{18} n^{3} \approx 0.096225 n^{3}
$$

This implies Conjecture 19 up to $O\left(n^{2}\right)$ due to integrality problems: $\alpha^{\star} n \notin \mathbb{N}$.
For an edge $u v$ of a bipartite graph G, we have

$$
n_{G}(v, u) \geq d_{G}(v) \quad \text { and } \quad n_{G}(u, v) \leq n-d_{G}(v)
$$

Bipartite graphs

Theorem (MPRW 2022)

If G is a bipartite graph of order n, then

$$
\operatorname{Mo}(G) \leq \alpha^{\star}\left(1-\alpha^{\star}\right)\left(1-2 \alpha^{\star}\right) n^{3}=\frac{\sqrt{3}}{18} n^{3} \approx 0.096225 n^{3}
$$

This implies Conjecture 19 up to $O\left(n^{2}\right)$ due to integrality problems: $\alpha^{\star} n \notin \mathbb{N}$.
For an edge $u v$ of a bipartite graph G, we have

$$
n_{G}(v, u) \geq d_{G}(v) \quad \text { and } \quad n_{G}(u, v) \leq n-d_{G}(v)
$$

which implies

$$
\begin{aligned}
\left|n_{G}(u, v)-n_{G}(v, u)\right| & \leq n-2 \min \left\{d_{G}(u), d_{G}(v)\right\} \\
& =n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right) .
\end{aligned}
$$

Bipartite graphs

We obtain

$$
M o(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

- Let the partite sets V_{1} and V_{2} of G have orders αn and $(1-\alpha) n$ for some $\alpha \in(0,1 / 2]$.

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

- Let the partite sets V_{1} and V_{2} of G have orders αn and $(1-\alpha) n$ for some $\alpha \in(0,1 / 2]$.
- Let $I=\{0,1, \ldots,(1-\alpha) n\}$ and $J=\{0,1, \ldots, \alpha n\}$.

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

- Let the partite sets V_{1} and V_{2} of G have orders αn and $(1-\alpha) n$ for some $\alpha \in(0,1 / 2]$.
- Let $I=\{0,1, \ldots,(1-\alpha) n\}$ and $J=\{0,1, \ldots, \alpha n\}$.
- Let V_{1} contain exactly $x_{i} \alpha n$ vertices of degree i for every $i \in I$.

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

- Let the partite sets V_{1} and V_{2} of G have orders αn and $(1-\alpha) n$ for some $\alpha \in(0,1 / 2]$.
- Let $I=\{0,1, \ldots,(1-\alpha) n\}$ and $J=\{0,1, \ldots, \alpha n\}$.
- Let V_{1} contain exactly $x_{i} \alpha n$ vertices of degree i for every $i \in I$.
- Let V_{2} contain exactly $y_{j}(1-\alpha) n$ vertices of degree j for every $j \in J$.

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right)
$$

and we show the stated bound for the right hand side.

- Let the partite sets V_{1} and V_{2} of G have orders αn and $(1-\alpha) n$ for some $\alpha \in(0,1 / 2]$.
- Let $I=\{0,1, \ldots,(1-\alpha) n\}$ and $J=\{0,1, \ldots, \alpha n\}$.
- Let V_{1} contain exactly $x_{i} \alpha n$ vertices of degree i for every $i \in I$.
- Let V_{2} contain exactly $y_{j}(1-\alpha) n$ vertices of degree j for every $j \in J$.
- Let G have exactly $m_{i, j} \alpha(1-\alpha) n^{2}$ edges between a vertex from V_{1} of degree i and a vertex from V_{2} of degree j for every $(i, j) \in I \times J$.

Bipartite graphs

Since $\sum_{j \in J} m_{i, j} \alpha(1-\alpha) n^{2}=i x_{i} \alpha n$,

Bipartite graphs

Since $\sum_{j \in J} m_{i, j} \alpha(1-\alpha) n^{2}=i x_{i} \alpha n$, we obtain

$$
\sum_{j \in J} m_{i, j}-\frac{i x_{i}}{(1-\alpha) n}=0 \text { for every } i \in I
$$

and, symmetrically,

$$
\sum_{i \in I} m_{i, j}-\frac{j y_{j}}{\alpha n}=0 \text { for every } j \in J
$$

Bipartite graphs

Since $\sum_{j \in J} m_{i, j} \alpha(1-\alpha) n^{2}=i x_{i} \alpha n$, we obtain

$$
\sum_{j \in J} m_{i, j}-\frac{i x_{i}}{(1-\alpha) n}=0 \text { for every } i \in I
$$

and, symmetrically,

$$
\begin{aligned}
& \sum_{i \in I} m_{i, j}-\frac{j y_{j}}{\alpha n}=0 \text { for every } j \in J . \\
M o(G) & \leq \sum_{u v \in E(G)} n\left(1-\frac{2}{n} \min \left\{d_{G}(u), d_{G}(v)\right\}\right) \\
& =\left(\sum_{(i, j) \in I \times J} m_{i, j}\left(1-\frac{2}{n} \min \{i, j\}\right)\right) \alpha(1-\alpha) n^{3} .
\end{aligned}
$$

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \operatorname{OPT}(P) \alpha(1-\alpha) n^{3}
$$

for the following linear programm (P) :

Bipartite graphs

We obtain

$$
\operatorname{Mo}(G) \leq \operatorname{OPT}(P) \alpha(1-\alpha) n^{3}
$$

for the following linear programm (P) :

$$
\max \sum_{(i, j) \in I \times J} m_{i, j}\left(1-\frac{2}{n} \min \{i, j\}\right),
$$

s.th.

$$
\begin{aligned}
\sum_{i \in I} x_{i} & =1 \\
\sum_{j \in J} y_{j} & =1 \\
\sum_{j \in J} m_{i, j}-\frac{i x_{i}}{(1-\alpha) n} & =0 \quad \text { for every } i \in I \\
\sum_{i \in I} m_{i, j}-\frac{j y_{j}}{\alpha n} & =0 \quad \text { for every } j \in J \\
x_{i}, y_{j}, m_{i, j} & \geq 0 \quad \text { for every }(i, j) \in I \times J .
\end{aligned}
$$

Bipartite graphs

The dual of (P) is the following linear programm (D):

$$
\begin{array}{rlrl}
\min & p+q, & & \\
\text { s.th. } & p_{i}+q_{j} & \geq 1-\frac{2}{n} \min \{i, j\} & \\
\text { for every } i \in I \text { and every } j \in J, \tag{D}\\
p & \geq \frac{i p_{i}}{(1-\alpha) n} & & \text { for every } i \in I, \\
q & \geq \frac{j q_{j}}{\alpha n} & & \text { for every } j \in J, \\
p, q, p_{j}, q_{j} & \in \mathbb{R} & & \text { for every } i \in I \text { and every } j \in J .
\end{array}
$$

Bipartite graphs

The dual of (P) is the following linear programm (D):

$$
\begin{array}{rlrl}
\min \quad p+q, & & \\
\text { (D.th. } & p_{i}+q_{j} & \geq 1-\frac{2}{n} \min \{i, j\} & \\
p & & \text { for every } i \in I \text { and every } j \in J, \\
p & \geq \frac{i p_{i}}{(1-\alpha) n} & & \text { for every } i \in I, \\
q & \geq \frac{j q_{j}}{\alpha n} & & \text { for every } j \in J, \\
p, q, p_{j}, q_{j} & \in \mathbb{R} & & \text { for every } i \in I \text { and every } j \in J .
\end{array}
$$

- We just need weak duality $\operatorname{OPT}(P) \leq \operatorname{OPT}(D)$.

Bipartite graphs

The dual of (P) is the following linear programm (D):

$$
\begin{array}{rlrl}
\min & p+q, & & \\
\text { s.th. } & p_{i}+q_{j} & \geq 1-\frac{2}{n} \min \{i, j\} & \\
\text { for every } i \in I \text { and every } j \in J, \tag{D}\\
p & \geq \frac{i p_{i}}{(1-\alpha) n} & & \text { for every } i \in I, \\
q & \geq \frac{j q_{j}}{\alpha n} & & \text { for every } j \in J, \\
p, q, p_{j}, q_{j} & \in \mathbb{R} & & \text { for every } i \in I \text { and every } j \in J .
\end{array}
$$

- We just need weak duality $\operatorname{OPT}(P) \leq \operatorname{OPT}(D)$.
- $p \stackrel{!}{=} \frac{i p_{i}}{(1-\alpha) n}$ for $i \geq 1 \Rightarrow p_{i}=\frac{(1-\alpha) n}{i} p$.
- $q_{j}=\frac{\alpha n}{j} q$ for $j \geq 1$.

Bipartite graphs

$$
p_{i}+q_{j} \geq 1-\frac{2}{n} \min \{i, j\} \text { for } 1 \leq i \leq j
$$

Bipartite graphs

$$
\begin{gathered}
p_{i}+q_{j} \geq 1-\frac{2}{n} \min \{i, j\} \text { for } 1 \leq i \leq j . \\
\Uparrow \\
\frac{p}{\left(\frac{i}{(1-\alpha) n}\right)}+\frac{2 i}{n}+q \geq 1 \text { for } 1 \leq i \leq \alpha n .
\end{gathered}
$$

Bipartite graphs

$$
\begin{gathered}
p_{i}+q_{j} \geq 1-\frac{2}{n} \min \{i, j\} \text { for } 1 \leq i \leq j . \\
\Uparrow \\
\frac{p}{\left(\frac{i}{(1-\alpha) n}\right)}+\frac{2 i}{n}+q \geq 1 \text { for } 1 \leq i \leq \alpha n . \\
\Uparrow \\
\left(\frac{p}{x}+2(1-\alpha) x\right)+q \geq 1 \quad \text { for } \quad x=\frac{i}{(1-\alpha) n} \in\left(0, \frac{\alpha}{1-\alpha}\right] .
\end{gathered}
$$

Bipartite graphs

For some $\delta>0$, the function

$$
f:(0, \infty) \rightarrow \mathbb{R}: x \mapsto \frac{\beta}{x}+\gamma x
$$

with $\beta \geq 0$ and $\gamma>0$ satisfies

$$
\min \{f(x): x \in(0, \delta]\}= \begin{cases}f\left(\sqrt{\frac{\beta}{\gamma}}\right)=2 \sqrt{\beta \gamma} & , \text { if } \delta \geq \sqrt{\frac{\beta}{\gamma}} \\ f(\delta) & , \text { if } \delta \leq \sqrt{\frac{\beta}{\gamma}}\end{cases}
$$

Bipartite graphs

It follows $\operatorname{OPT}(D) \leq \operatorname{OPT}\left(D^{\prime}\right)$ for

$$
\min \quad p+q,
$$

$$
\text { s.th. } \quad p+q \geq 1-2 \alpha
$$

(D^{\prime})

$$
\begin{aligned}
p+2 \sqrt{2 q \alpha} & \geq 1 & \text { if } q<2 \alpha \\
2 \sqrt{2 p(1-\alpha)}+q & \geq 1 & \text { if } p<\frac{2 \alpha^{2}}{1-\alpha} \\
p, q & \geq 0 . &
\end{aligned}
$$

Bipartite graphs

It follows $\operatorname{OPT}(D) \leq \operatorname{OPT}\left(D^{\prime}\right)$ for

$$
\begin{array}{rlrl}
\min & p+q & & \\
\text { s.th. } & p+q & \geq 1-2 \alpha, & \\
\left(D^{\prime}\right) & p+2 \sqrt{2 q \alpha} & \geq 1 & \text { if } q<2 \alpha, \\
& & \geq 1 & \text { if } p<\frac{2 \alpha^{2}}{1-\alpha}, \\
2 \sqrt{2 p(1-\alpha)}+q & \geq 0 . &
\end{array}
$$

The proof is now completed by showing

$$
\operatorname{OPT}\left(D^{\prime}\right) \leq \frac{\alpha^{\star}\left(1-\alpha^{\star}\right)\left(1-2 \alpha^{\star}\right)}{\alpha(1-\alpha)}
$$

Split graphs

Split graphs

Theorem (MPRW 2022)

If G is a split graph that arises from a clique C of order αn and an independent set I of order $(1-\alpha) n$ for some $\alpha \in[0,1]$ by adding m edges between vertices in C and vertices in I,

Split graphs

Theorem (MPRW 2022)

If G is a split graph that arises from a clique C of order αn and an independent set I of order $(1-\alpha) n$ for some $\alpha \in[0,1]$ by adding m edges between vertices in C and vertices in I, then

$$
\left.\begin{array}{rl}
\operatorname{Mo}(G) & \leq((1+\alpha) n-1) m-\frac{2 m^{2}}{(1-\alpha) n} \\
& \leq\left\{\begin{array}{ll}
\alpha(1-\alpha) n^{2}((1-\alpha) n-1) & , \text { if } \alpha \leq \frac{1}{3}-\frac{1}{3 n} \\
\frac{1}{8}(1-\alpha) n((1+\alpha) n-1)^{2}
\end{array}, \text { if } \alpha>\frac{1}{3}-\frac{1}{3 n}\right.
\end{array}\right] \begin{aligned}
& \\
&
\end{aligned}
$$

Each stated bound is best possible up to $O\left(n^{2}\right)$.

Split graphs

Let G be as in the statement and let $u v$ be an edge of G.

$$
\left|n_{G}(u, v)-n_{G}(v, u)\right| \leq \begin{cases}n-d_{G}(v)-1 & , \text { if } u \in C \text { and } v \in I \\ \left|d_{G}(u)-d_{G}(v)\right| & , \text { if } u, v \in C\end{cases}
$$

Let E be the set of the m edges of G between C and I.

Split graphs

Let G be as in the statement and let $u v$ be an edge of G.

$$
\left|n_{G}(u, v)-n_{G}(v, u)\right| \leq \begin{cases}n-d_{G}(v)-1 & , \text { if } u \in C \text { and } v \in I \\ \left|d_{G}(u)-d_{G}(v)\right| & , \text { if } u, v \in C\end{cases}
$$

Let E be the set of the m edges of G between C and I.

$$
\begin{aligned}
\operatorname{Mo}(G) & \leq \sum_{u v \in E}\left(n-d_{G}(v)-1\right)+\sum_{u v \in\binom{c}{2}}\left|d_{G}(u)-d_{G}(v)\right| \\
& =m(n-1)-\sum_{v \in I} d_{G}(v)^{2}+\sum_{u v \in\binom{c}{2}}\left|d_{G}(u)-d_{G}(v)\right| \\
& \leq m(n-1)-\frac{m^{2}}{(1-\alpha) n}+\sum_{u v \in\binom{c}{2}}\left|d_{G}(u)-d_{G}(v)\right| \\
& \leq m(n-1)-\frac{m^{2}}{(1-\alpha) n}+\alpha n m-\frac{m^{2}}{(1-\alpha) n}
\end{aligned}
$$

General graphs

General graphs

Conjecture 20 would imply

$$
M o(G) \leq \frac{4}{27} n^{3}=0 . \overline{148} n^{3}
$$

General graphs

Conjecture 20 would imply

$$
M o(G) \leq \frac{4}{27} n^{3}=0 . \overline{148} n^{3}
$$

Geneson and Tsai [2021] improved $\operatorname{Mo}(G)<0.5 n^{3}$ to

$$
\begin{aligned}
M o(G) \leq M o^{\star}(G) & :=\sum_{u v \in E(G)} \underbrace{\left(n-\min \left\{d_{G}(u), d_{G}(v)\right\}\right)}_{\geq\left|n_{G}(u, v)-n_{G}(v, u)\right|} \\
& \leq \frac{5}{24}(1+o(1)) n^{3} \approx 0.2083(1+o(1)) n^{3} .
\end{aligned}
$$

General graphs

Conjecture 20 would imply

$$
M o(G) \leq \frac{4}{27} n^{3}=0 . \overline{148} n^{3}
$$

Geneson and Tsai [2021] improved $M o(G)<0.5 n^{3}$ to

$$
\begin{aligned}
M o(G) \leq M o^{\star}(G) & :=\sum_{u v \in E(G)} \underbrace{\left(n-\min \left\{d_{G}(u), d_{G}(v)\right\}\right)}_{\geq\left|n_{G}(u, v)-n_{G}(v, u)\right|} \\
& \leq \frac{5}{24}(1+o(1)) n^{3} \approx 0.2083(1+o(1)) n^{3}
\end{aligned}
$$

Adapting the linear programming approach yields...

Theorem (MPRW 2022)

If G is a graph of order n and maximum degree Δ, then
$M o^{\star}(G) \leq\left(2\left(\frac{\Delta}{n}\right)^{2}+\left(\frac{\Delta}{n}\right)-2\left(\frac{\Delta}{n}\right) \sqrt{\left(\frac{\Delta}{n}\right)^{2}+\left(\frac{\Delta}{n}\right)}\right) n^{3} \leq(3-2 \sqrt{2}) n^{3} \approx 0.1716 n^{3}$.

General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then $\operatorname{Mo}^{\star}(G) \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3} \leq 0.1548 n^{3}$.

General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then $\operatorname{Mo}^{\star}(G) \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3} \leq 0.1548 n^{3}$.
The proof is by induction in n.

General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then $\operatorname{Mo}^{\star}(G) \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3} \leq 0.1548 n^{3}$.
The proof is by induction in n. $n=1$: Trivial.

General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then $\operatorname{Mo}^{\star}(G) \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3} \leq 0.1548 n^{3}$.
The proof is by induction in n.
$n=1$: Trivial.
$n>1$: Let the graph G of order n be such that
(i) $M o^{\star}(G)$ is as large as possible,
(ii) subject to (i), the graph G has as many edges as possible, and
(iii) subject to (i) and (ii), the term $\sum_{u \in V(G)} d_{G}^{2}(u)$ is as large as possible.

General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then $\operatorname{Mo}^{\star}(G) \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3} \leq 0.1548 n^{3}$.
The proof is by induction in n.
$n=1$: Trivial.
$n>1$: Let the graph G of order n be such that
(i) $M o^{\star}(G)$ is as large as possible,
(ii) subject to (i), the graph G has as many edges as possible, and
(iii) subject to (i) and (ii), the term $\sum_{u \in V(G)} d_{G}^{2}(u)$ is as large as possible.

There is a linear ordering $\pi: u_{1}, u_{2}, \ldots, u_{n}$ of $V(G)$ such that

$$
d_{G}\left(u_{1}\right) \leq d_{G}\left(u_{2}\right) \leq \ldots \leq d_{G}\left(u_{n}\right)
$$

and

$$
d_{1}^{+} \geq d_{2}^{+} \geq \ldots \geq d_{n}^{+}
$$

where d_{i}^{+}be the number of forward edges at u_{i}.

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

General graphs

$\delta=d_{G}\left(u_{1}\right)$.
u_{1}

General graphs

$\delta=d_{G}\left(u_{1}\right)$.
u_{1}
$u_{n-\delta}$

General graphs
$\delta=d_{G}\left(u_{1}\right)$.

General graphs

$$
\delta=d_{G}\left(u_{1}\right) .
$$

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

$V(G) \backslash I$

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

$V(G) \backslash I$
$N_{G}\left(u_{1}\right)$

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

$$
V(G) \backslash I
$$

$N_{G}\left(u_{1}\right)$
independent

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

$n-\min \left\{d_{G}(u), d_{G}(v)\right\}=\delta-\min \left\{d_{H}(u), d_{H}(v)\right\}$ for every edge $u v$ of H

General graphs

$\delta=d_{G}\left(u_{1}\right)$.

$n-\min \left\{d_{G}(u), d_{G}(v)\right\}=\delta-\min \left\{d_{H}(u), d_{H}(v)\right\}$ for every edge $u v$ of H

$$
M o^{\star}(G)=\delta(n-\delta)^{2}+M o^{\star}(H) \stackrel{\prime}{\leq} \delta(n-\delta)^{2}+\left(\frac{2}{\sqrt{3}}-1\right) \delta^{3} \leq\left(\frac{2}{\sqrt{3}}-1\right) n^{3}
$$

Irregularity

Irregularity

Albertson [1997] defined the irregularity $\operatorname{irr}(G)$ of a graph G as

$$
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right|
$$

Irregularity

Albertson [1997] defined the irregularity $\operatorname{irr}(G)$ of a graph G as

$$
\begin{gathered}
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right| \\
\operatorname{irr}(G \pm e) \leq \operatorname{irr}(G) \forall e \Rightarrow G=S_{p, n-p}=K_{p} \circ \bar{K}_{n-p}
\end{gathered}
$$

Irregularity

Albertson [1997] defined the irregularity $\operatorname{irr}(G)$ of a graph G as

$$
\begin{gathered}
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right| . \\
\operatorname{irr}(G \pm e) \leq \operatorname{irr}(G) \forall e \Rightarrow G=S_{p, n-p}=K_{p} \circ \bar{K}_{n-p} \\
\operatorname{irr}(G) \leq \max _{p} S_{p, n-p}=\left\lfloor\frac{n}{3}\right\rfloor\left\lceil\frac{2 n}{3}\right\rceil\left(\left\lceil\frac{2 n}{3}\right\rceil-1\right)<\frac{4 n^{3}}{27}
\end{gathered}
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

Hansen and Mélot [2005]

$$
\operatorname{irr}(G) \leq f(n, m)
$$

Irregularity

For a graph G with n vertices, m edges, maximum degree Δ, and minimum degree δ, Zhou and Luo [2008] showed

$$
\begin{aligned}
& \operatorname{irr}(G) \leq m \sqrt{\frac{2 n(2 m+(n-1)(\Delta-\delta))}{n+\Delta-\delta}-4 m} \\
& \operatorname{irr}(G) \leq \sqrt{m\left(2 m n(\Delta+\delta)-n^{2} \Delta \delta-4 m^{2}\right)}
\end{aligned}
$$

Using variations of $S_{p, n-p}$, Abdo, Cohen, and Dimitrov [2014] provided lower bounds on the maximum irregularity of graphs of given order, maximum degree, and minimum degree.

- Bipartite graphs [Henning and Rautenbach 2007]
- Bounded clique number [Zhou and Luo 2008]
- Graphs with a given number of vertices of degree 1
[Dorjsembe, Buyantogtokh, Das, and Horoldagva 2022]
[Liu, Chen, Hu, and Zhu 2022]

The irregularity of a graph of bounded maximum degree

The irregularity of a graph of bounded maximum degree

$$
K_{1}, K_{\Delta, 1}, K_{\Delta, 2}, K_{\Delta, 3}, K_{\Delta, 4}, \ldots, K_{\Delta, \Delta-1}, K_{\Delta, \Delta}
$$

Theorem (RW 2023)

Let G be a graph with n vertices, m edges, and maximum degree at most Δ, where Δ is a positive integer. If $d \in\{0, \ldots, \Delta-1\}$ is such that $\frac{2 m}{n} \in\left[\frac{2 \Delta d}{\Delta+d}, \frac{2 \Delta(d+1)}{\Delta+d+1}\right]$, then

$$
\operatorname{irr}(G) \leq d(d+1) n+\frac{1}{\Delta}\left(\Delta^{2}-(2 d+1) \Delta-d^{2}-d\right) m
$$

$(n, \Delta) \in\{(60,3),(100,10)\}$

The irregularity of a graph of bounded maximum degree

Corollary (RW 2023)

If G is a graph with n vertices, m edges, and maximum degree at most Δ, where Δ is a positive integer, then

$$
\operatorname{irr}(G) \leq \frac{(\Delta n-2 m) \Delta m}{\Delta n-m}<\frac{(2-\sqrt{2})(\sqrt{2}-1)}{\sqrt{2}} \Delta^{2} n .
$$

The irregularity of a graph of bounded maximum degree
Comparing to Zhou and Luo [2008]:

The irregularity of a graph of bounded maximum/minimum degree

The irregularity of a graph of bounded maximum/minimum degree For integers $\Delta>\delta \geq 0$, let

$$
\begin{aligned}
\delta^{*} & =\operatorname{argmax}\left\{\frac{\Delta(\Delta-i) i}{\Delta+i}: i \in\{\delta, \ldots, \Delta\}\right\} \\
& \in \begin{cases}\lfloor(\sqrt{2}-1) \Delta\rfloor,\lceil(\sqrt{2}-1) \Delta\rceil\}, & \text { if } \delta \leq\lfloor(\sqrt{2}-1) \Delta\rfloor \\
\{\delta\}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

The irregularity of a graph of bounded maximum/minimum degree For integers $\Delta>\delta \geq 0$, let

$$
\begin{aligned}
\delta^{*} & =\operatorname{argmax}\left\{\frac{\Delta(\Delta-i) i}{\Delta+i}: i \in\{\delta, \ldots, \Delta\}\right\} \\
& \in\left\{\left\{\begin{array}{ll}
\lfloor(\sqrt{2}-1) \Delta\rfloor,\lceil(\sqrt{2}-1) \Delta\rceil\}, & \text { if } \delta \leq\lfloor(\sqrt{2}-1) \Delta\rfloor \\
\{\delta\}, & \text { otherwise. }
\end{array}\right.\right.
\end{aligned}
$$

Proposition (RW 2023)

If G is a graph with n vertices, maximum degree at most Δ, and minimum degree at least δ, where $\Delta>\delta \geq 0$ are integers, and δ^{*} is as above, then

$$
\operatorname{irr}(G) \leq \frac{\Delta\left(\Delta-\delta^{*}\right) \delta^{*}}{\Delta+\delta^{*}} n .
$$

The irregularity of a graph of bounded maximum/minimum degree

Proposition (RW 2023)

Let G be a graph with n vertices, m edges, maximum degree at most Δ, and minimum degree at least δ, where $\Delta>\delta \geq 1$ are integers. If $\frac{2 m}{n} \in\left[\delta, \frac{2 \Delta \delta}{\Delta+\delta}\right]$, then

$$
\operatorname{irr}(G) \leq 2 \Delta m-\delta \Delta n
$$

$(n, \Delta, \delta)=(50,10,4), m \in[100,250]$

Proofs

Proofs

Let $I_{0}=\{0,1, \ldots, \Delta\}$ and $I=I_{0} \backslash\{0\}$.

$$
\operatorname{irr}(G) \leq \mathrm{OPT}(P)
$$

max

$$
\sum_{i, j \in I: i<j}(j-i) m_{i, j}
$$

s.th.
(P)

$$
\begin{aligned}
& \sum_{i \in I_{0}} n_{i}=n \\
& \sum_{i \in I} i n_{i}=2 m
\end{aligned}
$$

$$
2 m_{i, i}+\sum_{j \in I: j<i} m_{j, i}+\sum_{j \in I: j>i} m_{i, j}-i n_{i}=0 \quad \text { for every } i \in I
$$

$$
n_{i} \in \mathbb{R}_{\geq 0} \quad \text { for every } i \in I_{0}, \text { and }
$$

$$
m_{i, j} \in \mathbb{R}_{\geq 0} \quad \text { for every } i, j \in I \text { with } i \leq j
$$

Proofs

$$
\begin{array}{rlll}
\min & n x+2 m y & & \\
\text { s.th. } & z_{i}+z_{j} & \geq j-i & \text { for every } i, j \in I \text { with } i<j, \\
x+i y & \geq i z_{i} & \text { for every } i \in I, \tag{D}\\
x & \in \mathbb{R}_{\geq 0}, & \\
y & \in \mathbb{R}^{2} & \text { and } \\
z_{i} & \in \mathbb{R}_{\geq 0}, \quad \text { for every } i \in I .
\end{array}
$$

Proofs

$$
\begin{aligned}
& \min n x+2 m y \\
& \text { s.th. } \quad z_{i}+z_{j} \geq j-i \quad \text { for every } i, j \in I \text { with } i<j \text {, } \\
& \text { (D) } \\
& \begin{aligned}
x+i y & \geq i z_{i} \\
x & \in \mathbb{R}_{\geq 0},
\end{aligned} \\
& y \in \mathbb{R} \text {, and } \\
& z_{i} \in \mathbb{R}_{\geq 0}, \quad \text { for every } i \in I . \\
& \sum_{i, j \in 1: i<j}(j-i) m_{i, j} \\
& \leq \sum_{i, j \in I: i<j}(\underbrace{z_{i}+z_{j}}_{\geq j-i}) m_{i, j}+\underbrace{2 \sum_{i \in I} z_{i} m_{i, i}+x n_{0}+\sum_{i \in I}\left(x+i y-i z_{i}\right) n_{i}}_{\geq 0} \\
& =\left(\sum_{i \in I_{0}} n_{i}\right) x+\left(\sum_{i \in I} i n_{i}\right) y+\sum_{i \in I}\left(2 m_{i, i}+\sum_{j \in I: j<i} m_{j, i}+\sum_{j \in I: j>i} m_{i, j}-i n_{i}\right) z_{i} \\
& =n x+2 m y \text {. }
\end{aligned}
$$

Proofs

$\left(x, y,\left(z_{i}\right)_{i \in I}\right)$ with

$$
\begin{aligned}
x & =d(d+1) \\
y & =\frac{1}{2 \Delta}\left(\Delta^{2}-(2 d+1) \Delta-d^{2}-d\right), \text { and } \\
z_{i} & =\frac{1}{i} x+y \text { for } i \in I
\end{aligned}
$$

is a feasible solution for (D).

Proofs

$\left(x, y,\left(z_{i}\right)_{i \in I}\right)$ with

$$
\begin{aligned}
x & =d(d+1) \\
y & =\frac{1}{2 \Delta}\left(\Delta^{2}-(2 d+1) \Delta-d^{2}-d\right), \text { and } \\
z_{i} & =\frac{1}{i} x+y \text { for } i \in 1
\end{aligned}
$$

is a feasible solution for (D).

$$
\begin{aligned}
\operatorname{irr}(G) & \leq \operatorname{OPT}(P) \\
& \leq \operatorname{OPT}(D) \\
& \leq n x+2 m y \\
& =d(d+1) n+\frac{1}{\Delta}\left(\Delta^{2}-(2 d+1) \Delta-d^{2}-d\right) m
\end{aligned}
$$

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

Problem 21 Find chemical graphs and chemical trees on n vertices with largest Mostar index.

A problem from [Doslic et al. 2018]

Problem 21 Find chemical graphs and chemical trees on n vertices with largest Mostar index.

- Chemical trees [Deng and Li 2021]
- Trees with given degree sequence [Deng and Li 2021]

A problem from [Doslic et al. 2018]

Problem 21 Find chemical graphs and chemical trees on n vertices with largest Mostar index.

- Chemical trees [Deng and Li 2021]
- Trees with given degree sequence [Deng and Li 2021]

$$
M o(G) \leq m(n-2) \leq \frac{\Delta}{2} n(n-2)=\frac{\Delta}{2} n^{2}-c_{\Delta} n .
$$

A problem from [Doslic et al. 2018]

Problem 21 Find chemical graphs and chemical trees on n vertices with largest Mostar index.

- Chemical trees [Deng and Li 2021]
- Trees with given degree sequence [Deng and Li 2021]

$$
M o(G) \leq m(n-2) \leq \frac{\Delta}{2} n(n-2)=\frac{\Delta}{2} n^{2}-c_{\Delta} n .
$$

We conjecture that

$$
\max \{M o(G): G \text { has order } n \text { and maximum degree at most } \Delta\}
$$

is

$$
\frac{\Delta}{2} n^{2}-\Theta_{\Delta}(n \log (n))
$$

A problem from [Doslic et al. 2018]

Theorem (HPRW 2023)

For integers n_{0} and Δ at least 3 , there is a Δ-regular graph G of order n at least n_{0} with

$$
M o(G) \geq \frac{\Delta}{2} n^{2}-\left(20 \Delta^{3}+12 \Delta^{2}-24 \Delta+48\right) n \log _{(\Delta-1)}(n) .
$$

A problem from [Doslic et al. 2018]

Theorem (HPRW 2023)

For integers n_{0} and Δ at least 3 , there is a Δ-regular graph G of order n at least n_{0} with

$$
M o(G) \geq \frac{\Delta}{2} n^{2}-\left(20 \Delta^{3}+12 \Delta^{2}-24 \Delta+48\right) n \log _{(\Delta-1)}(n) .
$$

Theorem (HPRW 2023)

For integers n and Δ at least 3 , if G is a graph of order n and maximum degree at most Δ, then

$$
M o(G) \leq \frac{\Delta}{2} n^{2}-(2-o(n)) \frac{(\Delta-2)}{(\Delta-1)^{2}} n \log _{(\Delta-1)}\left(\log _{(\Delta-1)}(n)\right)
$$

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

A problem from [Doslic et al. 2018]

$$
\begin{aligned}
\left|n_{G}(u, v)-n_{G}(v, u)\right| & \leq n-2 \min \{p, q\} \\
\sum_{u v \in E(T)} \min \{p, q\} & \geq(1-o(n)) c_{\Delta} n \log (\log (n))
\end{aligned}
$$

Thank you for the attention!

