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Mostar index

The Mostar index Mo(G ) of a graph G is

Mo(G ) =
∑

uv∈E(G)

|nG (u, v)− nG (v , u)|,

where, for an edge uv of G ,

nG (u, v) is the number of vertices of G with smaller distance in G to u than to v,

that is,
nG (u, v) =

∣∣{w ∈ V (G ) : distG (u,w) < distG (v ,w)
}∣∣.

Since |nG (u, v)− nG (v , u)| ≤ (n − 1)− 1 = n − 2, we have

Mo(G ) ≤ m(n − 2) < 0.5n3.

G is distance-balanced if nG (u, v) = nG (v , u) for every edge uv of G .
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Mostar index

[1]-[78], sparse graphs and trees, chemical graphs, hypercube-related graphs
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Relation to the Wiener index

The Wiener index W (G ) of a graph G [Wiener 1947] is

W (G ) =
1

2

∑
u∈V (G)

 ∑
v∈V (G)

distG (u, v)


=

1

2

∑
u∈V (G)

σG (u).

Since
|nG (u, v)− nG (v , u)| = |σG (u)− σG (v)| for every edge uv of G ,

we have
Mo(G ) =

∑
uv∈E(G)

|σG (u)− σG (v)|.
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Relation to the irregularity
The irregularity irr(G ) of a graph G [Albertson 1997] is

irr(G ) =
∑

uv∈E(G)

|dG (u)− dG (v)|.

If diam(G ) ≤ 2, then

r r@
@@

�
��

@
@@

�
��

a b c

u v

|nG (u, v)− nG (v , u)| = |(a+ 1)− (c + 1)|
= |(a+ b + 1)− (b + c + 1)|
= |dG (u)− dG (v)|,

and, hence,
Mo(G ) = irr(G ).
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Two conjectures from [Doslic et al. 2018]
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Two conjectures from [Doslic et al. 2018]

As observed by Geneson and Tsai [2021], for α ≤ 1
2 ,

Mo(Kαn,(1−α)n) = αn(1− α)n(1− 2α)n = α(1− α)(1− 2α)n3

and

argmax
α

α(1− α)(1− 2α) =
1

2

(
1− 1√

3

)
=: α⋆ ≈ 0.21132.

Hence, at least for large n,

Mo (K0.211...n,0.789...n) > Mo
(
K0.3n,0.6n

)
,

and Conjecture 19 cannot hold as stated.

Albertson [1997] showed

irr(G ) ≤ 4

27
n3,

which implies Conjecture 20 up to O(n2) provided that diam(G ) ≤ 2.
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Bipartite graphs

Theorem (MPRW 2022)

If G is a bipartite graph of order n, then

Mo(G ) ≤ α⋆(1− α⋆)(1− 2α⋆)n3 =

√
3

18
n3 ≈ 0.096225n3.

This implies Conjecture 19 up to O(n2) due to integrality problems: α⋆n ̸∈ N.

For an edge uv of a bipartite graph G , we have

nG (v , u) ≥ dG (v) and nG (u, v) ≤ n − dG (v),

which implies

|nG (u, v)− nG (v , u)| ≤ n − 2min
{
dG (u), dG (v)

}
= n

(
1− 2

n
min

{
dG (u), dG (v)

})
.
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Bipartite graphs

We obtain

Mo(G ) ≤
∑

uv∈E(G)

n

(
1− 2

n
min

{
dG (u), dG (v)

})
,

and we show the stated bound for the right hand side.

Let the partite sets V1 and V2 of G have orders αn and (1− α)n for some α ∈ (0, 1/2].

Let I = {0, 1, . . . , (1− α)n} and J = {0, 1, . . . , αn}.

Let V1 contain exactly xiαn vertices of degree i for every i ∈ I .

Let V2 contain exactly yj(1− α)n vertices of degree j for every j ∈ J.

Let G have exactly mi ,jα(1− α)n2 edges between a vertex from V1 of degree i and a
vertex from V2 of degree j for every (i , j) ∈ I × J.
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Bipartite graphs

Since
∑
j∈J

mi ,jα(1− α)n2 = ixiαn,

we obtain

∑
j∈J

mi ,j − ixi
(1−α)n = 0 for every i ∈ I ,

and, symmetrically, ∑
i∈I

mi ,j −
jyj
αn = 0 for every j ∈ J.

Mo(G ) ≤
∑

uv∈E(G)

n

(
1− 2

n
min

{
dG (u), dG (v)

})

=

 ∑
(i ,j)∈I×J

mi ,j

(
1− 2

n
min{i , j}

)α(1− α)n3.
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Bipartite graphs

We obtain
Mo(G ) ≤ OPT(P)α(1− α)n3

for the following linear programm (P):

max
∑

(i ,j)∈I×J

mi ,j

(
1− 2

n min{i , j}
)
,

s.th.
∑
i∈I

xi = 1,

(P)
∑
j∈J

yj = 1,∑
j∈J

mi ,j − ixi
(1−α)n = 0 for every i ∈ I ,∑

i∈I
mi ,j −

jyj
αn = 0 for every j ∈ J,

xi , yj ,mi ,j ≥ 0 for every (i , j) ∈ I × J.
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Bipartite graphs

The dual of (P) is the following linear programm (D):

min p + q,

s.th. pi + qj ≥ 1− 2
n min{i , j} for every i ∈ I and every j ∈ J,

(D) p ≥ ipi
(1−α)n for every i ∈ I ,

q ≥ jqj
αn for every j ∈ J,

p, q, pj , qj ∈ R for every i ∈ I and every j ∈ J.

We just need weak duality OPT(P) ≤ OPT(D).

p
!
= ipi

(1−α)n for i ≥ 1 ⇒ pi =
(1−α)n

i p.

qj =
αn
j q for j ≥ 1.
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Bipartite graphs

pi + qj ≥ 1− 2

n
min{i , j} for 1 ≤ i ≤ j .

⇑

p(
i

(1−α)n

) +
2i

n
+ q ≥ 1 for 1 ≤ i ≤ αn.

⇑

(p
x
+ 2(1− α)x

)
+ q ≥ 1 for x =

i

(1− α)n
∈
(
0,

α

1− α

]
.

15 / 38



Bipartite graphs

pi + qj ≥ 1− 2

n
min{i , j} for 1 ≤ i ≤ j .

⇑

p(
i

(1−α)n

) +
2i

n
+ q ≥ 1 for 1 ≤ i ≤ αn.

⇑

(p
x
+ 2(1− α)x

)
+ q ≥ 1 for x =

i

(1− α)n
∈
(
0,

α

1− α

]
.

15 / 38



Bipartite graphs

pi + qj ≥ 1− 2

n
min{i , j} for 1 ≤ i ≤ j .

⇑

p(
i

(1−α)n

) +
2i

n
+ q ≥ 1 for 1 ≤ i ≤ αn.

⇑

(p
x
+ 2(1− α)x

)
+ q ≥ 1 for x =

i

(1− α)n
∈
(
0,

α

1− α

]
.

15 / 38



Bipartite graphs

0 5 10

5

10

15

20

x
1 x
+
x

For some δ > 0, the function

f : (0,∞) → R : x 7→ β

x
+ γx

with β ≥ 0 and γ > 0 satisfies

min
{
f (x) : x ∈ (0, δ]

}
=

f
(√

β
γ

)
= 2

√
βγ , if δ ≥

√
β
γ ,

f (δ) , if δ ≤
√

β
γ .
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Bipartite graphs

It follows OPT(D) ≤ OPT(D ′) for

min p + q,

s.th. p + q ≥ 1− 2α,

(D ′) p + 2
√
2qα ≥ 1 if q < 2α,

2
√
2p(1− α) + q ≥ 1 if p < 2α2

1−α ,

p, q ≥ 0.

The proof is now completed by showing

OPT(D ′) ≤ α⋆(1− α⋆)(1− 2α⋆)

α(1− α)
.

□
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Split graphs

Theorem (MPRW 2022)

If G is a split graph that arises from a clique C of order αn and an independent set I of order
(1− α)n for some α ∈ [0, 1] by adding m edges between vertices in C and vertices in I , then

Mo(G ) ≤ ((1 + α)n − 1)m − 2m2

(1− α)n

≤


α(1− α)n2

(
(1− α)n − 1

)
, if α ≤ 1

3 − 1
3n ,

1
8(1− α)n

(
(1 + α)n − 1

)2
, if α > 1

3 − 1
3n

≤ 4

27
n3.

Each stated bound is best possible up to O(n2).
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(1− α)n for some α ∈ [0, 1] by adding m edges between vertices in C and vertices in I , then

Mo(G ) ≤ ((1 + α)n − 1)m − 2m2

(1− α)n

≤


α(1− α)n2

(
(1− α)n − 1

)
, if α ≤ 1

3 − 1
3n ,

1
8(1− α)n

(
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)2
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Split graphs
Let G be as in the statement and let uv be an edge of G .

|nG (u, v)− nG (v , u)| ≤

{
n − dG (v)− 1 , if u ∈ C and v ∈ I ,

|dG (u)− dG (v)| , if u, v ∈ C .

Let E be the set of the m edges of G between C and I .

Mo(G ) ≤
∑
uv∈E

(n − dG (v)− 1) +
∑

uv∈(C2)
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= m(n − 1)−
∑
v∈I

dG (v)
2 +

∑
uv∈(C2)

|dG (u)− dG (v)|
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General graphs

Conjecture 20 would imply

Mo(G ) ≤ 4

27
n3 = 0.148n3.

Geneson and Tsai [2021] improved Mo(G ) < 0.5n3 to

Mo(G ) ≤ Mo⋆(G ) :=
∑

uv∈E(G)

(
n −min{dG (u), dG (v)}

)︸ ︷︷ ︸
≥|nG (u,v)−nG (v ,u)|

≤ 5

24
(1 + o(1))n3 ≈ 0.2083(1 + o(1))n3.

Adapting the linear programming approach yields...

Theorem (MPRW 2022)

If G is a graph of order n and maximum degree ∆, then

Mo⋆(G ) ≤

2

(
∆

n

)2

+

(
∆

n

)
− 2

(
∆

n

)√(
∆

n

)2

+

(
∆

n

) n3 ≤
(
3− 2

√
2
)
n3 ≈ 0.1716n3.
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General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then Mo⋆(G ) ≤
(

2√
3
− 1
)
n3 ≤ 0.1548n3.

The proof is by induction in n.
n = 1: Trivial.
n > 1: Let the graph G of order n be such that

(i) Mo⋆(G ) is as large as possible,

(ii) subject to (i), the graph G has as many edges as possible, and

(iii) subject to (i) and (ii), the term
∑

u∈V (G)

d2
G (u) is as large as possible.

There is a linear ordering π : u1, u2, . . . , un of V (G ) such that

dG (u1) ≤ dG (u2) ≤ . . . ≤ dG (un)

and
d+
1 ≥ d+

2 ≥ . . . ≥ d+
n ,

where d+
i be the number of forward edges at ui .
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General graphs
δ = dG (u1).

r
u1

. . . r
un−δ

I V (G ) \ I

NG (u1)

6

independent

-�

join

6

=: H

n −min{dG (u), dG (v)} = δ −min{dH(u), dH(v)} for every edge uv of H

Mo⋆(G ) = δ(n − δ)2 +Mo⋆(H)
I
≤ δ(n − δ)2 +

(
2√
3
− 1

)
δ3 ≤

(
2√
3
− 1

)
n3.

□
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Irregularity

Albertson [1997] defined the irregularity irr(G ) of a graph G as

irr(G ) =
∑

uv∈E(G)

|dG (u)− dG (v)|.

irr(G ± e) ≤ irr(G ) ∀e ⇒ G = Sp,n−p = Kp ◦ K̄n−p

irr(G ) ≤ max
p

Sp,n−p =
⌊n
3

⌋⌈2n
3

⌉(⌈
2n

3

⌉
− 1

)
<

4n3

27
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Irregularity

Hansen and Mélot [2005]

irr(G ) ≤ f (n,m)
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irr(G ) ≤ f (n,m)

r

r r

r

r r

r

r r r
�
�

�
�

'
&

$
%

�
�
�

@
@

@

n − p

p

24 / 38



Irregularity

Hansen and Mélot [2005]
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Irregularity

For a graph G with n vertices, m edges, maximum degree ∆, and minimum degree δ, Zhou
and Luo [2008] showed

irr(G ) ≤ m

√√√√2n
(
2m + (n − 1)(∆− δ)

)
n +∆− δ

− 4m and

irr(G ) ≤
√

m
(
2mn(∆ + δ)− n2∆δ − 4m2

)
,

Using variations of Sp,n−p, Abdo, Cohen, and Dimitrov [2014] provided lower bounds on the
maximum irregularity of graphs of given order, maximum degree, and minimum degree.

Bipartite graphs [Henning and Rautenbach 2007]

Bounded clique number [Zhou and Luo 2008]

Graphs with a given number of vertices of degree 1
[Dorjsembe, Buyantogtokh, Das, and Horoldagva 2022]
[Liu, Chen, Hu, and Zhu 2022]
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The irregularity of a graph of bounded maximum degree

K1, K∆,1, K∆,2, K∆,3, K∆,4, . . . , K∆,∆−1, K∆,∆

Theorem (RW 2023)

Let G be a graph with n vertices, m edges, and maximum degree at most ∆, where ∆ is a

positive integer. If d ∈ {0, . . . ,∆− 1} is such that 2m
n ∈

[
2∆d
∆+d ,

2∆(d+1)
∆+d+1

]
, then

irr(G ) ≤ d(d + 1)n +
1

∆

(
∆2 − (2d + 1)∆− d2 − d

)
m.

(n,∆) ∈ {(60, 3), (100, 10)}

0 50

0

50

m
0 200 400

0
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The irregularity of a graph of bounded maximum degree

Corollary (RW 2023)

If G is a graph with n vertices, m edges, and maximum degree at most ∆, where ∆ is a
positive integer, then

irr(G ) ≤ (∆n − 2m)∆m

∆n −m
<

(
2−

√
2
) (√

2− 1
)

√
2

∆2n.

0 50

0

50

100

0 200 400

0

500

1,000

1,500
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The irregularity of a graph of bounded maximum degree

Comparing to Zhou and Luo [2008]:

0 100 200 300

0

2,000

4,000

6,000

8,000

m
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The irregularity of a graph of bounded maximum/minimum degree

For integers ∆ > δ ≥ 0, let

δ∗ = argmax

{
∆(∆− i) i

∆+ i
: i ∈ {δ, . . . ,∆}

}

∈


{⌊(√

2− 1
)
∆
⌋
,
⌈(√

2− 1
)
∆
⌉}

, if δ ≤
⌊(√

2− 1
)
∆
⌋

{δ}, otherwise.

Proposition (RW 2023)

If G is a graph with n vertices, maximum degree at most ∆, and minimum degree at least δ,
where ∆ > δ ≥ 0 are integers, and δ∗ is as above, then

irr(G ) ≤ ∆(∆− δ∗) δ∗

∆+ δ∗
n.
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The irregularity of a graph of bounded maximum/minimum degree

Proposition (RW 2023)

Let G be a graph with n vertices, m edges, maximum degree at most ∆, and minimum degree

at least δ, where ∆ > δ ≥ 1 are integers. If 2m
n ∈

[
δ, 2∆δ

∆+δ

]
, then

irr(G ) ≤ 2∆m − δ∆n.

(n,∆, δ) = (50, 10, 4), m ∈ [100, 250]

100 150 200 250

0

1,000

2,000

3,000

m
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Proofs

Let I0 = {0, 1, . . . ,∆} and I = I0 \ {0}.

irr(G ) ≤ OPT(P)

max
∑

i ,j∈I :i<j

(j − i)mi ,j

s.th.
∑
i∈I0

ni = n,

(P)
∑
i∈I

ini = 2m,

2mi ,i +
∑

j∈I :j<i

mj ,i +
∑

j∈I :j>i

mi ,j − ini = 0 for every i ∈ I ,

ni ∈ R≥0 for every i ∈ I0, and
mi ,j ∈ R≥0 for every i , j ∈ I with i ≤ j .
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Proofs

min nx + 2my
s.th. zi + zj ≥ j − i for every i , j ∈ I with i < j ,

(D) x + iy ≥ izi for every i ∈ I ,
x ∈ R≥0,
y ∈ R, and
zi ∈ R≥0, for every i ∈ I .

∑
i ,j∈I :i<j

(j − i)mi ,j

≤
∑

i ,j∈I :i<j

(zi + zj︸ ︷︷ ︸
≥j−i

)mi ,j + 2
∑
i∈I

zimi ,i + xn0 +
∑
i∈I

(x + iy − izi )ni︸ ︷︷ ︸
≥0

=

∑
i∈I0

ni

 x +

(∑
i∈I

ini

)
y +

∑
i∈I

2mi ,i +
∑

j∈I :j<i

mj ,i +
∑

j∈I :j>i

mi ,j − ini

 zi

= nx + 2my .
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Proofs

(x , y , (zi )i∈I ) with

x = d(d + 1),

y =
1

2∆

(
∆2 − (2d + 1)∆− d2 − d

)
, and

zi =
1

i
x + y for i ∈ I

is a feasible solution for (D).

irr(G ) ≤ OPT(P)

≤ OPT(D)

≤ nx + 2my

= d(d + 1)n +
1

∆

(
∆2 − (2d + 1)∆− d2 − d

)
m,

□
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A problem from [Doslic et al. 2018]

Chemical trees [Deng and Li 2021]

Trees with given degree sequence [Deng and Li 2021]

Mo(G ) ≤ m(n − 2) ≤ ∆

2
n(n − 2) =

∆

2
n2 − c∆n.

We conjecture that

max
{
Mo(G ) : G has order n and maximum degree at most ∆

}
is

∆

2
n2 −Θ∆(n log(n)).
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A problem from [Doslic et al. 2018]

Theorem (HPRW 2023)

For integers n0 and ∆ at least 3, there is a ∆-regular graph G of order n at least n0 with

Mo(G ) ≥ ∆

2
n2 −

(
20∆3 + 12∆2 − 24∆ + 48

)
n log(∆−1)(n).

Theorem (HPRW 2023)

For integers n and ∆ at least 3, if G is a graph of order n and maximum degree at most ∆,
then

Mo(G ) ≤ ∆

2
n2 − (2− o(n))

(∆− 2)

(∆− 1)2
n log(∆−1)

(
log(∆−1)(n)

)
.
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A problem from [Doslic et al. 2018]
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A problem from [Doslic et al. 2018]

G

s

T
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s su

v

s s
�
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�

�
�

�
�

p

?

6

q

|nG (u, v)− nG (v , u)| ≤ n − 2min{p, q}∑
uv∈E(T )

min{p, q} ≥ (1− o(n))c∆n log(log(n)).
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Thank you for the attention!
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