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Mostar index
The Mostar index Mo(G) of a graph G is
MO(G): Z |nG(u7v)_nG(Va U)|,
uveE(G)

where, for an edge uv of G,
ng(u, v) is the number of vertices of G with smaller distance in G to u than to v,

that is,
ng(u,v) = [{w € V(G) : distg(u, w) < distg(v, w)}|.
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Mostar index

The Mostar index Mo(G) of a graph G is

Mo(G)= Y Ing(u,v)— ng(v,u)|,

uveE(G)

where, for an edge uv of G,
ng(u, v) is the number of vertices of G with smaller distance in G to u than to v,

that is,
ng(u,v) = [{w € V(G) : distg(u, w) < distg(v, w)}|.

e Since |ng(u,v) —ng(v,u)] <(n—1)—1=n—2, we have

Mo(G) < m(n—2) < 0.5n°.
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Mostar index

The Mostar index Mo(G) of a graph G is

Mo(G)= Y Ing(u,v)— ng(v,u)|,

uveE(G)

where, for an edge uv of G,
ng(u, v) is the number of vertices of G with smaller distance in G to u than to v,

that is,
ng(u,v) = [{w € V(G) : distg(u, w) < distg(v, w)}|.

e Since |ng(u,v) —ng(v,u)] <(n—1)—1=n—2, we have

Mo(G) < m(n—2) < 0.5n°.

e G is distance-balanced if ng(u,v) = ng(v, u) for every edge uv of G.
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Relation to the Wiener index

The Wiener index W(G) of a graph G [Wiener 1947] is

W(G) = % > (Z distg(u,v))

ueV(G) \veV(G)

= % Z oc(u).

ueV(G)
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Relation to the Wiener index

The Wiener index W(G) of a graph G [Wiener 1947] is

W(G) = % > (Z distg(u,v))

ueV(G) \veV(G)
1
ueV(G)
Since
|ng(u,v) — ng(v,u)| = |og(u) — og(v)| for every edge uv of G,
we have

Mo(G)= ) log(u) —a6(v)l.

uveE(G)
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Relation to the irregularity
The irregularity irr(G) of a graph G [Albertson 1997] is

irr(G) = Y |de(u) — dg(v)l.

uveE(G)
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Relation to the irregularity
The irregularity irr(G) of a graph G [Albertson 1997] is

irr(G) = Y |de(u) — dg(v)l.

uveE(G)
If diam(G) < 2, then
a b c
u v
Ing(u,v) —ng(v,u)] = |(a+1)—(c+1)

= |(a+b+1)—(b+c+1)
= |dg(u) — dg(v)l,

and, hence,
Mo(G) = irr(G).
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Two conjectures from [Doslic et al. 2018]

5.2 Conjectures and open problems

For the beginning, it would be interesting to investigate how the results of papers
concerned with distance-balanced graphs extend to the case Mo (G) # 0.

We have already mentioned that Mo (K |,,/3,124/31) ~ 203 /27 € ®(n3).We believe
that this is the extremal graph among all bipartite graphs on the same number of
vertices.

Conjecture 19 Among bipartite graphs on n vertices Ky;32n/3 has the maximal
Mostar index.

For general graphs, the extremal graph is most likely the split graph with the same
parameters. The split graph S, , is obtained by taking a complete graph K,, on m
vertices and n isolated vertices K, and connecting every isolated vertex to all vertices
of K,,. A split graph is a join of a complete graph and the complement of another
complete graph.

Conjecture 20 Among all graphs on n vertices the split graph S, ;3,213 has the max-
imal Mostar index.
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Two conjectures from [Doslic et al. 2018]
As observed by Geneson and Tsai [2021], for a < %
Mo(Kun,(1—a)n) = an(l — a)n(l —2a)n = ol — a)(1 - 2a)n®

and ) .
argmax a1l — a)(1 - 2a) = 5 <1 — \@> =:a* ~ 0.21132.
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Two conjectures from [Doslic et al. 2018]
As observed by Geneson and Tsai [2021], for a < %

Mo(K,
and

1 1
argmax (1l —a)(1-2a)==(1— —= | = " ~ 0.21132.
g aft - a)(1 - 20) = 5 (1- )
Hence, at least for large n,

Mo (Ko.211...n,0.789...n) > Mo (KO.§n70.6n) ;

and Conjecture 19 cannot hold as stated.

an,(1—a)n) = an(l —a)n(l —2a)n = a(l — a)(1 - 2a)n®
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Two conjectures from [Doslic et al. 2018]
As observed by Geneson and Tsai [2021], for a < %
Mo(K,

and

1 1
argmax a(l —a)(l —2a) = 3 <1 - f3> —: 0" ~ 0.21132.

Hence, at least for large n,

Mo (Ko.211...n,0.789...n) > Mo (KO.§n70.6n) ;
and Conjecture 19 cannot hold as stated.

Albertson [1997] showed

4
irr(G) < En3,

which implies Conjecture 20 up to O(n?) provided that diam(G) < 2.

an,(1—a)n) = an(l —a)n(l —2a)n = a(l — a)(1 - 2a)n®
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Bipartite graphs

Theorem (MPRW 2022)
If G is a bipartite graph of order n, then

Mo(G) < a*(1 — o*)(1 — 2a*)n® = \/_n3 ~ 0.096225n°.
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Bipartite graphs

Theorem (MPRW 2022)
If G is a bipartite graph of order n, then

Mo(G) < a*(1 — a*)(1 — 2a*)n® = \1/—8§n3 ~ 0.096225n°.

This implies Conjecture 19 up to O(n?) due to integrality problems: a*n ¢ N.

For an edge uv of a bipartite graph G, we have

ng(v,u) > dg(v) and ng(u,v) <n—dg(v),

which implies
Ing(u,v) — ng(v,u)] < n—2min{dg(u),dc(v)}

= n (1 - % min {dg(u), dG(v)}) :

10/38



Bipartite graphs

We obtain

Mo(G) < Z n (1 - % min {dg(u), dg(v)}> ,

uveE(G)

and we show the stated bound for the right hand side.
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Bipartite graphs

We obtain

Mo(G) < Z n (1 - % min {dg(u), d(;(v)}> ,

uveE(G)

and we show the stated bound for the right hand side.
o Let the partite sets V; and V5 of G have orders an and (1 — a)n for some o € (0,1/2].

o Let / ={0,1,...,(1 —a)n} and J={0,1,...,an}.

Let V7 contain exactly x;an vertices of degree i for every i € /.

@ Let V, contain exactly y;(1 — «)n vertices of degree j for every j € J.

Let G have exactly m; ja(1 — a)n? edges between a vertex from Vi of degree i and a
vertex from V), of degree j for every (i,j) € | x J.

11/38



Bipartite graphs

Since Y m;jo(1 — a)n® = ix;an,
jed
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Bipartite graphs

Since Y m;ja(1 — a)n?® = ix;an, we obtain
jeJ

Emu_(li#)n:OforeveryiE/,
jed

and, symmetrically, ‘
S mij— 2 =0 for every j € J.

, an
iel
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Bipartite graphs
Since Y m;ja(1 — a)n?® = ix;an, we obtain
Jjed
Zm;xj—(li#)n:Oforeveryiel,
jed

and, symmetrically, ‘
S mij— 2 =0 for every j € J.

. an
iel

Mo(G) < Z n<1—imin{dc(u),dg(v)}>

uveE(G)

— [ X (1= 2mintigt) | e -y

(ij)elxJ
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Bipartite graphs

We obtain
Mo(G) < OPT(P)a(1 — a)n®

for the following linear programm (P):
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Bipartite graphs

We obtain
Mo(G) < OPT(P)a(1 — a)n®

for the following linear programm (P):

max Y. m;(1—2min{i,j}),

(ij)elxd
Sth in — ]_,
iel
(P) >y o= 1,
jed
J;J mjj — (1LX&)n = 0 foreveryiel,
> mij— % = 0 foreveryjeJ,

i€l

xi,yj,mij > 0  forevery (i,j) €l xJ.

13/38



Bipartite graphs
The dual of (P) is the following linear programm (D):

min p+aq,
s.th. pi+q > 1-— % min{i,j} for every i € | and every j € J,
(D) p > (J’C’;)n for every i € I,
qg > JC% for every j € J,
p.q,pj,q € R for every i € | and every j € J.
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Bipartite graphs

The dual of (P) is the following linear programm (D):

min p+aq,
s.th. pit+q = 1—%min{i,j}
(D) Pz iy
g > 4
p,q,pj,q € R

o We just need weak duality OPT(P) < OPT(D).

for every i € | and every j € J,
for every i € [,
for every j € J,

for every i € | and every j € J.
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Bipartite graphs

The dual of (P) is the following linear programm (D):

min p+aq,
s.th. pi+q > 1-— %min{i,j}
(D) bz g
g > 4

an

p,q,pj,q € R

o We just need weak duality OPT(P) < OPT(D).

| iD;: . 1—
o p= (1chlt)n forer:p;:ﬂp.

oqj:O‘T.”qforjzl.

for every i € | and every j € J,
for every i € [,
for every j € J,

for every i € | and every j € J.
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Bipartite graphs

2
pi+q; > 1— —min{i,j} for 1 <i<j.
n
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Bipartite graphs

2
pi+q; > 1— —min{i,j} for 1 <i<j.
n

T

p

()

9
—|——I—|—q21for1§i§om.
n
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Bipartite graphs

2
pi+q; > 1— —min{i,j} for 1 <i<j.
n

T

p

()

9
—|——I—|—q21for1§i§om.
n

T

p i «
—+2(1- >1 f = .
(x+ ( a)x)—i—q_ or X (1—()z)nE (0’1—04]
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Bipartite graphs

20 -
15 |- -
x
+
s 101 -
5 [ |
| | |
0 5 10
X
For some § > 0, the function
B

f:(0,00) > R:x— —+yx
X
with 8 > 0 and ~ > 0 satisfies
F(/2)=2yBy ,ifd6> /L,
min{f(x):x6(0,5]} = <\/:) 7 i
£(9) SEESVES
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Bipartite graphs

It follows OPT(D) < OPT(D') for

min p+a,
s.th. p+qg > 1-—2aq,
(D") p+2y2qa > 1 if g <20,
2\/2p(1—a)+q > 1 if p < 222,
p,g > 0
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Bipartite graphs

It follows OPT(D) < OPT(D') for

min p+a,
s.th. p+qg > 1-—2aq,
(D") p+2y2qa > 1 if g <20,
2\/2p(1—a)+q > 1 if p < 222,
p,g > 0

The proof is now completed by showing

a*(1—a*)(1—2a%)
a(l —a) '

OPT(D') <

17/38



Split graphs
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Split graphs

Theorem (MPRW 2022)

If G is a split graph that arises from a clique C of order an and an independent set | of order
(1 — a)n for some a € [0, 1] by adding m edges between vertices in C and vertices in |,
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Split graphs

Theorem (MPRW 2022)

If G is a split graph that arises from a clique C of order an and an independent set | of order
(1 — a)n for some a € [0, 1] by adding m edges between vertices in C and vertices in I, then

2m?
Mo(G) < ((1+a)n—1)m—

(1—a)n
a(l—a)n2((1—a)n—1) ifa<l- L
< 2
%(1—a)n<(1+a)n—1> Jifa>3— 4
< in3.

27

Each stated bound is best possible up to O(n?).

18/38




Split graphs
Let G be as in the statement and let uv be an edge of G.

ne(u.v) — ne(v.u)| < 4"~ 6 =1 ifueCandvel
7 = dotw) — do(v)] it ve

Let E be the set of the m edges of G between C and /.
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Split graphs
Let G be as in the statement and let uv be an edge of G.

Ing(u,v) — ng(v,u)| < {|dG(u) —de(v)| ,ifuvecC.

Let E be the set of the m edges of G between C and /.

Mo(G) < > (n—ds(v + > lde(u (v)]
uveE uve( )
= m(n—1)=Y de(v)>+ Y |dg(u) - ds(v)|
vel qu(C)
< m(n—1)— ( P > lde(u (v)]
uve(c)
m? m?
< m(n—l)—i(l_a)nnLomm—m

de(v)—1 ,ifueCandvel,
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General graphs
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General graphs
Conjecture 20 would imply

4 _
Mo(G) < —n® = 0.148n°.
o )_27n 0.148n
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General graphs
Conjecture 20 would imply

4 _
< —n*=0.148n°
Mo(G) < 571 0.148n

Geneson and Tsai [2021] improved Mo(G) < 0.5n3 to

Mo(G) < Mo*(G) = Y (n — min{dg(u), dg(v)})
uveE(G)

2|”G(U:V)*”G(V7U)|

< 234(1 + o(1))n® ~ 0.2083(1 + o(1))n°.
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General graphs
Conjecture 20 would imply

4 _
< —n*=0.148n°
Mo(G) < 571 0.148n

Geneson and Tsai [2021] improved Mo(G) < 0.5n3 to

Mo(G) < Mo*(G) = Y (n—min{dg(u) dc(v)})

J/

uveE(G)

2|”G(U:V)*”G(V7U)|

< 3(1 + o(1))n® ~ 0.2083(1 + o(1))n°.

- 24
Adapting the linear programming approach yields...
Theorem (MPRW 2022)

If G is a graph of order n and maximum degree A, then

0= (2(3)+(3) =(2)(2) - &

A

>) n < (3 - 2\@) n ~ 0.1716n°.

v
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General graphs
Theorem (MPRW 2022)

If G is a graph of order n, then Mo*(G) < (\% — 1) n3 < 0.1548n3.
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General graphs

Theorem (MPRW 2022)

If G is a graph of order n, then Mo*(G) < (l - 1) n® < 0.1548n3.

S

The proof is by induction in n.
n = 1: Trivial.
n > 1: Let the graph G of order n be such that
(i) Mo*(G) is as large as possible,
(i) subject to (i), the graph G has as many edges as possible, and
(i) subject to (i) and (ii), the term
ueV(G)

> d%(u) is as large as possible.
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General graphs
Theorem (MPRW 2022)

If G is a graph of order n, then Mo*(G) < (l - 1) n® < 0.1548n3.

&

The proof is by induction in n.
n = 1: Trivial.
n > 1: Let the graph G of order n be such that
(i) Mo*(G) is as large as possible,
(i) subject to (i), the graph G has as many edges as possible, and

(iii) subject to (i) and (i), the term >~ d2%(u) is as large as possible.
ueV(G)

There is a linear ordering 7 : ug, Uy, ..., u, of V(G) such that

de(u1) < dg(u2) < ... < dg(un)

and
+ + +
di >dy >...>d,,

where d,-+ be the number of forward edges at u;.

21/38



General graphs
0= dG(Ul).
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General graphs
6= dG(Ul).

u
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General graphs
6= dG(Ul).

u1 Up—s
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General graphs

5::2dG(U1)

u

Un—s
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General graphs

5i:2dG(U1)
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Un—s

!

independent
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General graphs
5i:2dG(U1)

u

Un—s

!

independent

join

n — min{dg(u),dg(v)} = — min{dy(u),dy(v)} for every edge uv of H
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General graphs
5i:2dG(U1)

u

Un—s

!

independent

join

n — min{dg(u),dg(v)} = — min{dy(u),dy(v)} for every edge uv of H

Mo*(G) = d(n—0)?+ Mo*(H) é 5(n—06)>+ <

22/38



Irregularity
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Irregularity

Albertson [1997] defined the irregularity irr(G) of a graph G as

ir(G)=>_ |de(u) - dg(v)I.
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Irregularity

Albertson [1997] defined the irregularity irr(G) of a graph G as
ir(G)=>_ |de(u) - dg(v)I.

uveE(G)

irr(G+te)<irr(G) Ve = G=Sppp=KyoKnrp

ir(6) < max S = |3 Fﬂ (Fﬂ . 1) ) 42”73

23/38



Irregularity

Hansen and Mélot [2005]

irr(G) < f(n,m)
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Irregularity
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Irregularity

For a graph G with n vertices, m edges, maximum degree A, and minimum degree 6, Zhou
and Luo [2008] showed

2n<2m +(n—1)(A— 5))

irr(G) TEA S

IN

m

—4m and

irr(G) < \/m<2mn(A +0) — n?Ad — 4m2),

Using variations of S, ,—p, Abdo, Cohen, and Dimitrov [2014] provided lower bounds on the
maximum irregularity of graphs of given order, maximum degree, and minimum degree.

e Bipartite graphs [Henning and Rautenbach 2007]
@ Bounded clique number [Zhou and Luo 2008]

o Graphs with a given number of vertices of degree 1
[Dorjsembe, Buyantogtokh, Das, and Horoldagva 2022]
[Liu, Chen, Hu, and Zhu 2022]
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The irregularity of a graph of bounded maximum degree
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The irregularity of a graph of bounded maximum degree

Ki, Kaji, Kap, Kag, Kag, ..., Kaa-1, Kana

Theorem (RW 2023)

Let G be a graph with n vertices, m edges, and maximum degree at most A, where A is a

positive integer. If d € {0,...,A — 1} is such that 27’" € [%, 2AA_~(_Z111)], then

irr(G) < d(d+1)n+ % (A% — (2d + 1)A — d* — d) m.

(n,A) € {(60,3),(100,10)}

1,500 .
50l i 1,000 | .
500 |- .
O L Il Il ] 0 L Il Il Il il
0 50 0 200 400
m m
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The irregularity of a graph of bounded maximum degree

Corollary (RW 2023)

If G is a graph with n vertices, m edges, and maximum degree at most /A, where A is a
positive integer, then

(An—2m)Am - (2 — \/5) (\/§ — 1)

. 2
irr(G) < A“n.
(6) < An—m V2
v
100 F s

1,500 |- |
50 | 1,000 |- |
500 |- .
0 L Il Il B O L Il Il Il |

0 50 0 200 400
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The irregularity of a graph of bounded maximum degree

Comparing to Zhou and Luo [2008]:

8,000 | |
6,000 | |
4,000
2,000 | |

= ]
| | |
0 100 200 300
m
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The irregularity of a graph of bounded maximum /minimum degree
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The irregularity of a graph of bounded maximum/minimum degree

For integers A > § > 0, let
0 = argmax{A(AA_;iI)l e {5,...,A}}

{{L(ﬁl)AH(ﬁl)M}, ifo<|(vV2-1)4
€

{6}, otherwise.
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The irregularity of a graph of bounded maximum/minimum degree

For integers A > § > 0, let

0 = argmax{A(AA_;I_i)i e {5,...,A}}
{{ [(v2-1)a],[(V2-1) 4]}, ifs<[(V2-1)A
S
{6}, otherwise.

Proposition (RW 2023)
If G is a graph with n vertices, maximum degree at most A, and minimum degree at least 9,
where A > 6 > 0 are integers, and §* is as above, then
A (A —6%)6"
A+ 0*

irr(G) <
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The irregularity of a graph of bounded maximum/minimum degree
Proposition (RW 2023)

Let G be a graph with n vertices, m edges, maximum degree at most A, and minimum degree

at least 6, where A > § > 1 are integers. IfQT’” € [6, %], then

irr(G) < 2Am— §An.

(n,A,8) = (50,10,4), m € [100, 250]

3,000 [ ]

2,000 | i

1,000

07\ | | \7

100 150 200 250
m
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Proofs
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Proofs

Let h ={0,1,...,A} and I = Iy \ {0}.

irr(G) < OPT(P)

max > G—i)mjj
ijeri<j
s.th. Yoni =
i€ly
(P) > ini =
iel
2mii+ > mii+ > mij—in =
jelj<i JEIj>i
n; €
mj; €

n’
2m,
0 for every i € I,

R>o forevery i€ I, and

R>o for every i,j € [ with i <.
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Proofs

min nx + 2my

s.th. zi+ z;

(D) X+ 1y
X

y
z;

m mmlV IV

for every i,j € | with i < j,
for every i € [,

and
for every i € I.
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Proofs

min nx + 2my

s.th. zi+zp > j—i foreveryi,jecl withi<j,
(D) X+Iiy > iz for every i € I,
X € Rzo,
y € R, and
zi € Rsg, foreveryicl.

> G- iymi

ijeli<j
< Z (z,-+zj)m;J+2Zz,-m,-,,-+xno+Z(X+iy—iz,-)n,-
ijeli<i oy icl icl
>0
= Zni X+<Zini>)/+z 2m;; + Z mj; + Z mjj — inj | z
i€ly iel i€l Jelj<i JEIj>i
= nx-+2my.
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Proofs

(X7 Y, (Zi)iel) with

x = d(d+1),
1 2 2

y = ﬁ(A —(2d +1)A — d* — d), and
1

zi = =x+yforiel
i

is a feasible solution for (D).
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Proofs

(X7 Y, (Zi)iel) with

x = d(d+1),
1 2 2
y = ﬁ(A —(2d +1)A — d* — d), and
1
zi = =x+yforiel
i

is a feasible solution for (D).
irr(G) OPT(P)

OPT(D)

nx + 2my
1

= d(d+1)n+ % (A% — (2d +1)A — d* — d) m,

ININ TN
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A problem from [Doslic et al. 2018]
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A problem from [Doslic et al. 2018]

3012 Journal of Mathematical Chemistry (2018) 56:2995-3013

Problem 21 Find chemical graphs and chemical trees onn vertices with largest Mostar
index.
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A problem from [Doslic et al. 2018]

3012 Journal of Mathematical Chemistry (2018) 56:2995-3013

Problem 21 Find chemical graphs and chemical trees onn vertices with largest Mostar
index.

o Chemical trees [Deng and Li 2021]

@ Trees with given degree sequence [Deng and Li 2021]

Mo(G) < m(n—2) < %n(n —2) = %nz —can.
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A problem from [Doslic et al. 2018]

3012 Journal of Mathematical Chemistry (2018) 56:2995-3013

Problem 21 Find chemical graphs and chemical trees onn vertices with largest Mostar
index.

o Chemical trees [Deng and Li 2021]

@ Trees with given degree sequence [Deng and Li 2021]

Mo(G) < m(n—2) < %n(n —2) = %nz —can.

We conjecture that

max { Mo(G) : G has order n and maximum degree at most A}

%nz — O©a(nlog(n)).
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A problem from [Doslic et al. 2018]

Theorem (HPRW 2023)

For integers ng and A at least 3, there is a A-regular graph G of order n at least ny with

Mo(G) > én (20A° + 12A% — 24A + 48) nlog(a_1(n).
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A problem from [Doslic et al. 2018]

Theorem (HPRW 2023)

For integers ng and A at least 3, there is a A-regular graph G of order n at least ny with

Mo(G) > én (20A3 + 1242 — 24A + 48) nlog(s_1)(n).

Theorem (HPRW 2023)

For integers n and A at least 3, if G is a graph of order n and maximum degree at most A,
then

Mo(G) < §n2 - (2- 0(”))%'”0%@—1) <|0g(A—1)(”)> :
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A problem from [Doslic et al. 2018]

[
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A problem from [Doslic et al. 2018]

[
/
/
.
//
yd
«
\ p
u .
v A
7 \\ \\\
// \\ \\
// \\ \\
N
\\
N
. T G
N
q AN

In(u,v) — ne(v.u)l < n—2min{p,q}
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A problem from [Doslic et al. 2018]

/.
/
.
{ p
u .
V /{\\\\\\
ST G
q \\\\\\
Ine(u,v) — ng(v,u)l < n—2min{p,q)
Z min{p,q} > (1 — o(n))canlog(log(n)).

uveE(T)
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Thank you for the attention!
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