On Hamilton cycles in highly symmetric graphs

Torsten Mütze

University of Warwick

Slovenian Conference on Graph Theory 2023

Introduction

- Sir Williams Rowan Hamilton (1805-1865): Icosian game

Introduction

- Sir Williams Rowan Hamilton (1805-1865): Icosian game

Introduction

- Sir Williams Rowan Hamilton (1805-1865): Icosian game

Introduction

- Sir Williams Rowan Hamilton (1805-1865): Icosian game

- Definition: A Hamilton path/cycle in a graph is a path/cycle in a graph that visits every vertex exactly once

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?
- prototypical NP-complete problem [Karp 1972]

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?
- prototypical NP-complete problem [Karp 1972]
- sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvátal 1976]

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?
- prototypical NP-complete problem [Karp 1972]
- sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvátal 1976]
- packing + decomposition [Nash-Williams 1971], [Kühn, Lapinskas, Osthus 2012], [Christofides, Kühn, Osthus 2012], [Kühn, Osthus, Treglown 2010]

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?
- prototypical NP-complete problem [Karp 1972]
- sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvátal 1976]
- packing + decomposition [Nash-Williams 1971], [Kühn, Lapinskas, Osthus 2012], [Christofides, Kühn, Osthus 2012], [Kühn, Osthus, Treglown 2010]
- random graphs [Korsunov 1976], [Komlós, Szemerédi 1983], [Bollobás 1984], [Ajtai, Komlós, Szemerédi 1985]

Hamilton cycle problem

- Problem: Does a graph have a Hamilton path/cyle?
- prototypical NP-complete problem [Karp 1972]
- sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvátal 1976]
- packing + decomposition [Nash-Williams 1971], [Kühn, Lapinskas, Osthus 2012], [Christofides, Kühn, Osthus 2012], [Kühn, Osthus, Treglown 2010]
- random graphs [Korsunov 1976], [Komlós, Szemerédi 1983], [Bollobás 1984], [Ajtai, Komlós, Szemerédi 1985]
- optimization (TSP, approximation) [Christofides 1976], [Karlin, Klein, Garan 2021], [Svensson, Tarnawski, Végh 2018], [Zenklusen 2018]

Lovász' conjecture

- the dodecahedron is vertex-transitive;

Lovász' conjecture

- the dodecahedron is vertex-transitive; it 'looks the same' from every vertex

Lovász' conjecture

- the dodecahedron is vertex-transitive; it 'looks the same' from every vertex
- advanced version of the Icosian game:

Lovász' conjecture

- the dodecahedron is vertex-transitive; it 'looks the same' from every vertex
- advanced version of the Icosian game:
- Conjecture [Lovász 1970]:
 Every connected vertex-transitive graph has a Hamilton cycle, apart from five exceptions $\left(K_{2}, \operatorname{Pet}, \operatorname{Cox}, \operatorname{Pet}^{\triangle}, \operatorname{Cox}^{\triangle}\right)$

Lovász' conjecture

- the dodecahedron is vertex-transitive; it 'looks the same' from every vertex
- advanced version of the Icosian game:
- Conjecture [Lovász 1970]:
 Every connected vertex-transitive graph has a Hamilton cycle, apart from five exceptions ($\left.K_{2}, \operatorname{Pet}, \operatorname{Cox}, \operatorname{Pet}^{\triangle}, \operatorname{Cox}^{\triangle}\right)$

Every connected vertex-transitive graph has a Hamilton path.

Lovász' conjecture

- the dodecahedron is vertex-transitive; it 'looks the same' from every vertex
- advanced version of the Icosian game:
- Conjecture [Lovász 1970]:
 Every connected vertex-transitive graph has a Hamilton cycle, apart from five exceptions ($\left.K_{2}, \operatorname{Pet}, \operatorname{Cox}, \operatorname{Pet}^{\triangle}, \operatorname{Cox}^{\triangle}\right)$

Every connected vertex-transitive graph has a Hamilton path.

- Conjecture [Babai 1995]:

There is $\varepsilon>0$ and infinitely many connected vertex-transitive graphs with longest cycle $(1-\varepsilon) n$.

Lovász' conjecture

- proved for special cases:

$$
\begin{aligned}
\circ & n=p, n=2 p, n=3 p, n=4 p(p \text { prime }) \\
& n=p^{2}, n=p^{3}, n=p^{4} \\
& n=2 p^{2}
\end{aligned}
$$

[Turner 1967], [Alspach 1979], [Marušič 1985+87], [Chen 1998], [Kutnar, Marušič 2008]

Lovász' conjecture

- proved for special cases:

$$
\begin{aligned}
\circ & n=p, n=2 p, n=3 p, n=4 p(p \text { prime }) \\
& n=p^{2}, n=p^{3}, n=p^{4} \\
& n=2 p^{2}
\end{aligned}
$$

[Turner 1967], [Alspach 1979], [Marušič 1985+87], [Chen 1998], [Kutnar, Marušič 2008]

- $\delta(G) \geq \varepsilon n$ [Christofides, Hladký, Máthé 2014]

Lovász' conjecture

- proved for special cases:

$$
\begin{aligned}
& \text { ○ } \quad n=p, n=2 p, n=3 p, n=4 p(p \text { prime }) \\
& \\
& n=p^{2}, n=p^{3}, n=p^{4} \\
& n=2 p^{2}
\end{aligned}
$$

[Turner 1967], [Alspach 1979], [Marušič 1985+87], [Chen 1998], [Kutnar, Marušič 2008]

- $\delta(G) \geq \varepsilon n$ [Christofides, Hladký, Máthé 2014]
- Cayley graphs

Lovász' conjecture

- proved for special cases:

$$
\begin{aligned}
& \circ \quad n=p, n=2 p, n=3 p, n=4 p(p \text { prime }) \\
& \\
& \quad n=p^{2}, n=p^{3}, n=p^{4} \\
& n=2 p^{2}
\end{aligned}
$$

[Turner 1967], [Alspach 1979], [Marušič 1985+87], [Chen 1998], [Kutnar, Marušič 2008]

- $\delta(G) \geq \varepsilon n$ [Christofides, Hladký, Máthé 2014]
- Cayley graphs
- abelian groups
- finite p-groups [Witte 1986]
- symmetric group + transpositions [Tchuente 1982]

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'
- allows fast generation algorithms [Knuth TAOCP Vol. 4a]

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'
- allows fast generation algorithms [Knuth TAOCP Vol. 4a]
- Examples:
- binary trees by rotations
[Lucas, R. v. Baronaigien, Ruskey 1993]

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'
- allows fast generation algorithms [Knuth TAOCP Vol. 4a]
- Examples:
- binary trees by rotations
[Lucas, R. v. Baronaigien, Ruskey 1993]

- permutations by adjacent transpositions

56318247
[Steinhaus, Johnson, Trotter 196x]

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'
- allows fast generation algorithms [Knuth TAOCP Vol. 4a]
- Examples:
- binary trees by rotations
[Lucas, R. v. Baronaigien, Ruskey 1993]

- permutations by adjacent transpositions

56318247
[Steinhaus, Johnson, Trotter 196x]

- bitstrings by flips [Gray 1953]

Combinatorial Gray codes

- Goal: List a class of combinatorial objects such that consecutive objects differ in a 'local change'
- allows fast generation algorithms [Knuth TAOCP Vol. 4a]
- Examples:
- binary trees by rotations
[Lucas, R. v. Baronaigien, Ruskey 1993]

- permutations by adjacent transpositions 56318247 [Steinhaus, Johnson, Trotter 196x]

	X
01010111	56138247

- bitstrings by flips [Gray 1953] 01011111
- spanning trees by edge exchanges [Cummins 1966], [Holzmann, Harary 1972]

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

permutahedron

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

base polytope

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

permutahedron

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

hypercube vertex-trans.

Flip graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations (=reconfiguration graph)

hypercube vertex-trans.
base polytope

Intersecting set systems

- Many Gray code problems are hard instances of Lovász' conjecture

Intersecting set systems

- Many Gray code problems are hard instances of Lovász' conjecture
- This talk: Vertex-transitive flip graphs defined by intersecting set systems

Intersecting set systems

- Many Gray code problems are hard instances of Lovász' conjecture
- This talk: Vertex-transitive flip graphs defined by intersecting set systems
vertices $=$ subsets of ground set $[n]=\{1,2, \ldots, n\}$

Intersecting set systems

- Many Gray code problems are hard instances of Lovász' conjecture
- This talk: Vertex-transitive flip graphs defined by intersecting set systems
vertices $=$ subsets of ground set $[n]=\{1,2, \ldots, n\}$ edges $=$ pairs of sets (A, B) satisfying conditions on the intersection of A and B

Hypercube

- Hypercube Q_{n}
vertices $=$ all subsets of $[n]=\{1,2, \ldots, n\}$ edges $=$ pairs (A, B) with $|A \triangle B|=1$

Hypercube

- Hypercube Q_{n}
vertices $=$ all subsets of $[n]=\{1,2, \ldots, n\}$ edges $=$ pairs (A, B) with $|A \triangle B|=1$

cover graph of the Boolean subset lattice

Hypercube

- Hypercube Q_{n}
vertices $=$ all subsets of $[n]=\{1,2, \ldots, n\}$ edges $=$ pairs (A, B) with $|A \triangle B|=1$

cover graph of the Boolean subset lattice

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity.

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity. 'Hamilton-laceable'

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity. 'Hamilton-laceable'
- Theorem [Saad, Schultz 1988]: Q_{n} contains a cycle of every even length from 4 to 2^{n}.

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity. 'Hamilton-laceable'
- Theorem [Saad, Schultz 1988]: Q_{n} contains a cycle of every even length from 4 to 2^{n}. 'bi-pancyclic'

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity. 'Hamilton-laceable'
- Theorem [Saad, Schultz 1988]: Q_{n} contains a cycle of every even length from 4 to 2^{n}. 'bi-pancyclic'
- Theorem [Aubert, Schneider 1982]: The edges of Q_{n} can be partitioned into Hamilton cycles and possibly a perfect matching.

Hypercube

- Folklore: Q_{n} has a Hamilton cycle for every $n \geq 2$.
- can be computed in time $\mathcal{O}(1)$ per vertex [Gray 1953]
- Theorem [Simmons 1978]: Q_{n} has a Hamilton path between any two vertices of opposite parity. 'Hamilton-laceable'
- Theorem [Saad, Schultz 1988]: Q_{n} contains a cycle of every even length from 4 to 2^{n}. 'bi-pancyclic'
- Theorem [Aubert, Schneider 1982]: The edges of Q_{n} can be partitioned into Hamilton cycles and possibly a perfect matching.
- Theorem [Fink 2007]: Every perfect matching of Q_{n} extends to a Hamilton cycle.

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$

level k

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$

level k

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive

level k

Bipartite Kneser graphs

- Bipartite Kneser graphs $H_{n, k}$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

- Theorem [Gregor, Merino, M. 2023]: $H_{2 k+1, k}$ is Hamilton-laceable for $k \geq 2$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

- Theorem [Gregor, Merino, M. 2023]: $H_{2 k+1, k}$ is Hamilton-laceable for $k \geq 2$.
- Theorem [Gregor, Mička, M. 2023]:

The subgraph of $Q_{2 k+1}$ between levels ℓ and $2 k+1-\ell$ has a Hamilton cycle for all $k \geq 1$ and $0 \leq \ell \leq k$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

- Theorem [Gregor, Merino, M. 2023]: $H_{2 k+1, k}$ is Hamilton-laceable for $k \geq 2$.
- Theorem [Gregor, Mička, M. 2023]:

The subgraph of $Q_{2 k+1}$ between levels ℓ and $2 k+1-\ell$ has a Hamilton cycle for all $k \geq 1$ and $0 \leq \ell \leq k$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof:
<2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

- Theorem [Gregor, Merino, M. 2023]: $H_{2 k+1, k}$ is Hamilton-laceable for $k \geq 2$.
- Theorem [Gregor, Mička, M. 2023]:

The subgraph of $Q_{2 k+1}$ between levels ℓ and $2 k+1-\ell$ has a Hamilton cycle for all $k \geq 1$ and $0 \leq \ell \leq k$.

Bipartite Kneser results

- Theorem [M. 2016]:
$H_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 1$.
'book' proof: <2 pages
- Theorem [M., Su 2017]: $H_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.
- Theorem [M., Nummenpalo 2020]:

Cycle in $H_{2 k+1, k}$ can be computed in time $\mathcal{O}(1)$ per vertex.

- Theorem [Gregor, Merino, M. 2023]: $H_{2 k+1, k}$ is Hamilton-laceable for $k \geq 2$.
- Theorem [Gregor, Mička, M. 2023]:

The subgraph of $Q_{2 k+1}$ between levels ℓ and $2 k+1-\ell$ has a Hamilton cycle for all $k \geq 1$ and $0 \leq \ell \leq k$.
(vertex-transitive iff $l=0$ or $\ell=k$)

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets

$$
A \cap B=\emptyset
$$

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets $A \cap B=\emptyset$

Petersen graph $K_{5,2}$

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets $A \cap B=\emptyset$

Petersen graph $K_{5,2}$

- we assume $k \geq 1$ and $n \geq 2 k+1$

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets

$$
A \cap B=\emptyset
$$

Petersen graph $K_{5,2}$

- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets

$$
A \cap B=\emptyset
$$

- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive
- conjectured to have a Hamilton cycle since 1970s

Kneser graphs

- Kneser graph $K_{n, k}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets

$$
A \cap B=\emptyset
$$

- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive
- conjectured to have a Hamilton cycle since 1970s
- notorious exception: Petersen graph $K_{5,2}$ only admits Hamilton path

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$,

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for K_{n}^{k}

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for K_{n}^{k}
- [Y. Chen 2000]: $n \geq(1+o(1)) 2.62 \cdot k$

Dense Kneser graphs

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for K_{n}^{k}
- [Y. Chen 2000]: $n \geq(1+o(1)) 2.62 \cdot k$ uses Baranyai, Kruskal-Katona, Ray-Chaudhuri-Wilson

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K_{5,2} \text { is Petersen graph }
$$

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K_{5,2} \text { is Petersen graph }
$$

-

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K_{5,2} \text { is Petersen graph }
$$

-
-

Sparse Kneser graphs

- sparsest case $n=2 k+1$
- $O_{k}:=K_{2 k+1, k}$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K_{5,2} \text { is Petersen graph }
$$

-
-
-

References

The Rugby Footballers of Croam

Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph O_{s} are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_{8}.

The following Hamiltonian circuit for O_{8} was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.

1. Guy H. J. Meredith and E. Keith Lloyd, The Footballers of Croam, J. Combinatorial Theory B 15 (1973), 161-166.

References

The Rugby Footballers of Croam

Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph O_{8} are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_{8}.

The following Hamiltonian circuit for O_{8} was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.

1. Guy H. J. Meredith and E. Keith Lloyd, The Footballers of Croam, J. Combinatorial Theory B 15 (1973), 161-166.

The Rugby Footballers of Croam

Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph O_{8} are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_{8}.

The following Hamiltonian circuit for O_{8} was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.
1234567: $\quad 9 \quad 110$

7	12	8	15	9	5	10	6	15	7	3	8	4	10
5	13												

$\begin{array}{llllllllllllll}6 & 14 & 7 & 2 & 10 & 3 & 12 & 4 & 13 & 5 & 1 & 6 & 2 & 10 \\ 3 & 12\end{array}$
$\begin{array}{lllllllllllllll}4 & 15 & 5 & 1 & 11 & 2 & 15 & 13 & 2 & 3 & 6 & 4 & 12 & 5 & 13\end{array} 11$
$\begin{array}{llllllllllllllll}3 & 12 & 5 & 2 & 10 & 6 & 14 & 13 & 11 & 7 & 8 & 11 & 4 & 10 & 1 & 9\end{array}$
$\begin{array}{lllllllllllllll}13 & 5 & 12 & 4 & 11 & 15 & 4 & 12 & 15 & 13 & 5 & 14 & 6 & 15 & 9\end{array} 4$
$\begin{array}{lllllllllllllll}12 & 5 & 13 & 8 & 15 & 11 & 10 & 9 & 4 & 13 & 7 & 15 & 8 & 3 & 14 \\ 6\end{array}$
$\begin{array}{llllllllllllllll}9 & 7 & 2 & 8 & 5 & 10 & 6 & 1 & 7 & 4 & 13 & 5 & 8 & 9 & 5 & 8\end{array}$
$\begin{array}{llllllllllllll}11 & 14 & 15 & 7 & 10 & 13 & 9 & 12 & 4 & 11 & 14 & 6 & 12 & 5 \\ 8 & 15\end{array}$
$\begin{array}{lllllllllllllll}7 & 9 & 6 & 7 & 13 & 12 & 3 & 4 & 7 & 3 & 15 & 6 & 3 & 13 & 4\end{array} 14$
$\begin{array}{lllllllllllllll}6 & 4 & 11 & 7 & 4 & 2 & 12 & 3 & 13 & 4 & 5 & 13 & 4 & 12 & 1\end{array} 11$
$\begin{array}{llllllllllllllll}14 & 5 & 13 & 1 & 7 & 10 & 12 & 15 & 5 & 8 & 3 & 6 & 2 & 4 & 11 & 14\end{array}$

10	13	9	12	1	11	15	9	14	3	13	2	12	1

$\begin{array}{llllllllllllll}4 & 14 & 3 & 10 & 2 & 8 & 1 & 5 & 11 & 4 & 10 & 3 & 9 & 12 \\ 6 & 2\end{array}$
$\begin{array}{llllllllllllll}5 & 11 & 4 & 10 & 3 & 7 & 14 & 6 & 12 & 5 & 11 & 4 & 8 & 13 \\ 7 & 1\end{array}$
$\begin{array}{lllllllllllllll}6 & 12 & 5 & 9 & 2 & 8 & 12 & 7 & 10 & 6 & 9 & 12 & 8 & 11 & 7\end{array} 10$
$\begin{array}{llllllllllllllll}1 & 9 & 13 & 8 & 12 & 7 & 6 & 12 & 7 & 13 & 8 & 1 & 9 & 3 & 10 & 5\end{array}$
$\begin{array}{lllllllllllllll}11 & 6 & 12 & 7 & 15 & 8 & 4 & 9 & 1 & 10 & 5 & 2 & 6 & 11 & 9 \\ 12\end{array}$
$\begin{array}{lllllllllllllll}10 & 4 & 2 & 14 & 12 & 2 & 4 & 6 & 7 & 10 & 14 & 15 & 11 & 5 & 2\end{array} 11$
$\begin{array}{lllllllllllll}8 & 9 & 10 & 12 & 13 & 14 & 15 & 1 & 14 & 15 & 6 & 8 & 12 \\ 7 & 9 & 14\end{array}$
$\begin{array}{lllllllllllllll}5 & 10 & 1 & 6 & 8 & 5 & 14 & 2 & 7 & 14 & 6 & 9 & 3 & 8 & 11 \\ 7\end{array}$
$\begin{array}{lllllllllllllll}10 & 13 & 9 & 12 & 15 & 11 & 14 & 4 & 13 & 1 & 7 & 15 & 5 & 14 & 2\end{array} 10$
$\begin{array}{llllllllllllll}1 & 7 & 15 & 1 & 12 & 2 & 10 & 13 & 2 & 6 & 8 & 2 & 7 & 10 \\ 2 & 8\end{array}$
$\begin{array}{llllllllllllllll}14 & 3 & 13 & 15 & 4 & 12 & 10 & 4 & 15 & 10 & 11 & 15 & 10 & 14 & 4 & 11\end{array}$
$\begin{array}{llllllllllllllll}1 & 7 & 15 & 5 & 8 & 10 & 12 & 2 & 6 & 4 & 5 & 1 & 4 & 9 & 3 & 8\end{array}$
$\begin{array}{llllllllllllllll}7 & 3 & 8 & 4 & 9 & 5 & 11 & 12 & 5 & 15 & 4 & 9 & 3 & 8 & 2 & 7\end{array}$
$\begin{array}{lllllllllllll}1 & 6 & 12 & 13 & 15 & 5 & 14 & 4 & 10 & 3 & 9 & 2 & 13=2345678, \text { etc. }\end{array}$

Kneser results

- Theorem [M., Nummenpalo, Walczak 2021]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.

Kneser results

- Theorem [M., Nummenpalo, Walczak 2021]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:

Kneser results

- Theorem [M., Nummenpalo, Walczak 2021]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021]:
$K_{2 k+2^{a}, k}$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.

Kneser results

- Theorem [M., Nummenpalo, Walczak 2021]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021]: $K_{2 k+2^{a}, k}$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.
- Theorem [Merino, M., Namrata STOC'23]: $K_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$, unless $(n, k)=(5,2)$.

Kneser results

- Theorem [M., Nummenpalo, Walczak 2021]: $O_{k}=K_{2 k+1, k}$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021]: $K_{2 k+2^{a}, k}$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.
- Theorem [Merino, M., Namrata STOC'23]: $K_{n, k}$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$, unless $(n, k)=(5,2)$.
- settles Hamiltonicity of $K_{n, k}$ in full generality
$H_{n, k}$ vs. $K_{n, k}$
- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.
$H_{n, k}$ vs. $K_{n, k}$
- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.

$H_{n, k}$ vs. $K_{n, k}$

- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.

$B(G)$

$H_{n, k}$ vs. $K_{n, k}$

- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.

$B(G)$

$H_{n, k}$ vs. $K_{n, k}$

- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.

$B(G)$

$H_{n, k}$ vs. $K_{n, k}$

- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.

$H_{n, k}$ vs. $K_{n, k}$
- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.

$H_{n, k}$ vs. $K_{n, k}$
- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K_{n, k}$ has a Hamilton cycle, then $H_{n, k}$ has a Hamilton cycle or path.

$H_{n, k}$ vs. $K_{n, k}$
- Observation: $H_{n, k}$ is bipartite double cover of $K_{n, k}$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K_{n, k}$ has a Hamilton cycle, then $H_{n, k}$ has a Hamilton cycle or path.
- we thus obtain a new proof for Hamiltonicity of $H_{n, k}$

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$ vertices $=\binom{[n]}{k}$

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$ vertices $=\binom{[n]}{k}$ edges $=$ pairs of sets with intersection size s $|A \cap B|=s$

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size s $|A \cap B|=s$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size s

$$
|A \cap B|=s
$$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$
- $J_{n, k, 0}=K_{n, k}$ Kneser graphs

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size s

$$
|A \cap B|=s
$$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$
- $J_{n, k, 0}=K_{n, k}$ Kneser graphs
- $J_{n, k, k-1}=$ (ordinary) Johnson graphs $J_{n, k}$

Generalized Johnson graphs

- generalized Johnson graphs $J_{n, k, s}$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size s

$$
|A \cap B|=s
$$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$
- $J_{n, k, 0}=K_{n, k}$ Kneser graphs
- $J_{n, k, k-1}=$ (ordinary) Johnson graphs $J_{n, k}$
- vertex-transitive

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$
- [Jiang, Ruskey 1994], [Knor 1994] proved that $J_{n, k, k-1}=J_{n, k-1}$ is Hamilton-connected

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$
- [Jiang, Ruskey 1994], [Knor 1994] proved that $J_{n, k, k-1}=J_{n, k-1}$ is Hamilton-connected
- Theorem [Merino, M., Namrata STOC'23]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.

Generalized Johnson results

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$
- [Jiang, Ruskey 1994], [Knor 1994] proved that $J_{n, k, k-1}=J_{n, k-1}$ is Hamilton-connected
- Theorem [Merino, M., Namrata STOC'23]: $J_{n, k, s}$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- settles Hamiltonicity of $J_{n, k, s}$ in full generality

Summary of our results

Summary of our results

spanning subgraph
generalized Kneser generalized Johnson graphs $K_{n, k, s}$

Corollary
bipartite Kneser graphs $H_{n, k}$
[2017]

> Knes $K_{n, k}$
$n=\mid 2 k+1$
middle levels
graphs $H_{2 k+1, k}$
[2016]
$O_{k}=K_{2 k+1, k}$

Summary of our results

spanning subgraph

generalized Kneser generalized Johnson graphs $K_{n, k, s}$

Corollary
bipartite Kneser graphs $H_{n, k}$
[2017]

$$
n=2 k+1 \quad \mathrm{BDC} \quad n=2 k+1
$$

- we settled Lovász' conjecture for all known families of vertex-transitive graphs defined by intersecting set systems

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor
2. glue cycles together

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together (needs $n \geq 2 k+3$)

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together (needs $n \geq 2 k+3$)

- requires analyzing the cycles

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together (needs $n \geq 2 k+3$)

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together (needs $n \geq 2 k+3$)

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles
- reminiscent of the gliders in Conway's game of Life

Proof outline for $K_{n, k}$

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$)
2. glue cycles together (needs $n \geq 2 k+3$)

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles
- reminiscent of the gliders in Conway's game of Life
- main technical innovation

Cycle factor

- consider characteristic vector of vertices of $K_{n, k}$:

Cycle factor

- consider characteristic vector of vertices of $K_{n, k}$: bitstrings of length n with k many 1 s

Cycle factor

- consider characteristic vector of vertices of $K_{n, k}$: bitstrings of length n with k many 1 s
- Example: $n=12, k=5, X=\{1,3,7,11,12\}$

Cycle factor

- consider characteristic vector of vertices of $K_{n, k}$: bitstrings of length n with k many 1 s
- Example: $n=12, k=5, X=\{1,3,7,11,12\}$

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=$] (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=$] (cyclically)

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- f : complement matched bits

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- f : complement matched bits

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- f : complement matched bits

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- f : complement matched bits

Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- f : complement matched bits

- f is invertible \rightarrow partition of $K_{n, k}$ into disjoint cycles

Cycle factor

- Example: $K_{5,2}$

Cycle factor

- Example: $K_{5,2}$

Analyzing the cycles

Analyzing the cycles

Analyzing the cycles

- Two matched bits form a glider
- Glider moves forward by 1 unit per step

Analyzing the cycles

- Four matched bits form one glider
- Glider moves forward by 2 units per step

Gliders

- glider $:=$ set of matched $1 s$ and $0 s$ (same number of each)

Gliders

- glider $:=$ set of matched $1 s$ and $0 s$ (same number of each)
- speed $:=$ numbers of $1 s=$ number of $0 s$

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$

Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$

Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$

- Uniform equation of motion: $\quad s(t)=v \cdot t+s(0)$

Gliders

- glider := set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$

- Uniform equation of motion:
position (modulo n) speed time $t=$ number of applications of f starting position

Overtaking of gliders

Overtaking of gliders

Overtaking of gliders

Overtaking of gliders

- during overtaking, slower glider stands still for two time steps

Overtaking of gliders

- during overtaking, slower glider stands still for two time steps
- faster glider is boosted by twice the speed of slower glider

Overtaking of gliders

- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0) \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)
\end{aligned}
$$

Overtaking of gliders

- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0)-2 v_{1} \cdot c_{1,2} \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{aligned}
$$

Overtaking of gliders

- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0)-2 v_{1} \cdot c_{1,2} \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{aligned}
$$

Overtaking of gliders

- non-uniform equations of motion:

$$
\begin{array}{r}
s_{1}(t)=v_{1} \cdot t+s_{1}(0) \begin{array}{l}
-2 v_{1} \cdot c_{1,2} \\
s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{array} \\
c_{1,2}:=\text { number of overtakings }
\end{array} \text { energy conservation! }
$$

Glider partition

Glider partition

Glider partition

- gliders can be interleaved in complicated ways

Glider partition

- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path

Glider partition

- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path
- general equations of motion have overtaking counters $c_{i, j}$ for all pairs of gliders i, j

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- Example: $K_{8,3}$

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- Example: $K_{8,3}$
speeds

$1,1,1$

$1,1,1$

2,1

2,1

3

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- Example: $K_{8,3}$
speeds cycle length

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- Example: $K_{8,3}$
speeds cycle length

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)

Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)
- don't know number of cycles

Gluing cycles

Gluing cycles

Gluing cycles

Gluing cycles

4-cycles exist as $n \geq 2 k+3$

Gluing cycles

Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)

Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint

Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint

Open problems

- other special cases of Lovász: Cayley graphs

Open problems

- other special cases of Lovász: Cayley graphs
- efficient algorithms: $H_{n, k}, K_{n, k}$

Open problems

- other special cases of Lovász: Cayley graphs
- efficient algorithms: $H_{n, k}, K_{n, k}$
- Hamilton decomposition: middle levels, (bipartite) Kneser

Open problems

- other special cases of Lovász: Cayley graphs
- efficient algorithms: $H_{n, k}, K_{n, k}$
- Hamilton decomposition: middle levels, (bipartite) Kneser
- Conjecture [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ can be decomposed into Hamilton cycles and possibly a perfect matching for $k \geq 3$.

Open problems

- other special cases of Lovász: Cayley graphs
- efficient algorithms: $H_{n, k}, K_{n, k}$
- Hamilton decomposition: middle levels, (bipartite) Kneser
- Conjecture [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ can be decomposed into Hamilton cycles and possibly a perfect matching for $k \geq 3$.
- Boolean layer cakes?

Open problems

- other special cases of Lovász: Cayley graphs
- efficient algorithms: $H_{n, k}, K_{n, k}$
- Hamilton decomposition: middle levels, (bipartite) Kneser
- Conjecture [Biggs 1979]: $O_{k}=K_{2 k+1, k}$ can be decomposed into Hamilton cycles and possibly a perfect matching for $k \geq 3$.
- Boolean layer cakes?
- Conjecture [Ruskey, Savage 1993]: Does every matching of Q_{n} extend to a Hamilton cycle?

Thank you!

