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e Sir Williams Rowan Hamilton (1805-1865):
Icosian game

e Definition: A Hamilton path/cycle in a graph
is a path/cycle in a graph that visits every vertex exactly once
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e prototypical NP-complete problem [Karp 1972]
e sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvatal 1976]

e packing + decomposition [Nash-Williams 1971], [Kiihn, Lapinskas,
Osthus 2012], [Christofides, Kiihn, Osthus 2012], [Kihn, Osthus, Tre-
glown 2010]

e random graphs [Korsunov 1976], [Komlds, Szemerédi 1983],
[Bollobas 1984], [Ajtai, Komlds, Szemerédi 1985]

e optimization (TSP, approximation) [Christofides 1976], [Karlin,
Klein, Garan 2021], [Svensson, Tarnawski, Végh 2018], [Zenklusen 2018]
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e the dodecahedron is vertex-transitive;

it ‘looks the same’ from every vertex

e advanced version of the lcosian game:

e Conjecture [Lovasz 1970]:
Every connected vertex-transitive graph has a Hamilton cycle,
apart from five exceptions (K5, Pet, Cox, Pet® COXA)

Every connected vertex-transitive graph has a Hamilton path.

e Conjecture [Babai 1995]:
There is € > 0 and infinitely many connected vertex-transitive
graphs with longest cycle (1 — ¢)n.
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e proved for special cases:
o n=p,n=2pn=3p,n=4p (p prime)
n=p?,n=p’,n=p
n = 2p°

[Turner 1967], [Alspach 1979], [Marusi¢ 1985+4-87], [Chen
1998], [Kutnar, Marusi&¢ 2008]

o ¢(G) > en [Christofides, Hladky, M&thé 2014]

e Cayley graphs
o abelian groups
o finite p-groups [Witte 1986]
o symmetric group + transpositions [Tchuente 1982]
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Combinatorial Gray codes

e Goal: List a class of combinatorial objects such that
consecutive objects differ in a ‘local change’

e allows fast generation algorithms [Knuth TAOCP Vol. 4a]

e Examples: < >
o binary trees by rotations
Lucas, R. v. Baronaigien, Ruskey 1993]

o permutations by adjacent transpositions 56318247

Steinhaus, Johnson, Trotter 196x] 01010111 56138047

o bitstrings by flips [Gray 1953 o\ 4.0

o spanning trees by edge exchanges
[Cummins 1966], [Holzmann, Harary 1972]
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Intersecting set systems

e Many Gray code problems are hard instances of Lovasz’
conjecture

e This talk: Vertex-transitive flip graphs defined by
Intersecting set systems

vertices = subsets of ground set [n| ={1,2,...,n}

edges = pairs of sets (A4, B) y o

satisfying conditions on the

intersection of A and B \ * . .
B °
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Hypercube

e Folklore: (),, has a Hamilton cycle for every n > 2.
e can be computed in time O(1) per vertex [Gray 1953]

e Theorem [Simmons 1978]: (),, has a Hamilton path between
any two vertices of opposite parity. ‘Hamilton-laceable’

e Theorem [Saad, Schultz 1988]: (),, contains a cycle of every
even length from 4 to 2". ‘pi_pancyclic’

e Theorem [Aubert, Schneider 1982]: The edges of (),, can be par-
titioned into Hamilton cycles and possibly a perfect matching.

e Theorem [Fink 2007]: Every perfect matching of (),, extends
to a Hamilton cycle.
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Bipartite Kneser graphs

e Bipartite Kneser graphs H,, ;.

vertices = ([Z]) U (n[ﬁ]k)

edges = pairs of sets A C B

e we assume k> 1 and n > 2k + 1

® vertex-transitive

e sparsest case n = 2k + 1:

middle levels conjecture
raised in the 1980s

n
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Theorem [M. 2016]:
Hoj 41 1 has a Hamilton cycle for all & > 1.

Theorem [M., Su 2017]:
H,, 1, has a Hamilton cycle for all £ > 1 and n > 2k + 1.

Theorem [M., Nummenpalo 2020]:
Cycle in Hog11 5 can be computed in time O(1) per vertex.

Theorem [Gregor, Merino, M. 2023]:
Hoj 41 1 1s Hamilton-laceable for k > 2.

‘book’ proof:
< 2 pages

Theorem [Gregor, Mi¢ka, M. 2023]: y
The subgraph of (o1 between levels /¢ y
and 2k + 1 — £ has a Hamilton cycle S
forall kK >1and 0 < /¢ < k. S

(vertex-transitive iff [ =0 or £ = k) oo .o
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e Kneser graph K,
3,5
vertices = ([Z]) o ﬂ
Y

edges = pairs of disjoint sets

ANB =10 />
{2,4}

1, 3}

12, 5}

e weassume k> 1andn>2k+1
e vertex-transitive
e conjectured to have a Hamilton cycle since 1970s

e notorious exception: Petersen graph K5 o only admits
Hamilton path
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Dense Kneser graphs

[Heinrich, Wallis 1978]: n > (1 + o(1))k?/1In 2 &
[B. Chen, Lih 1987]: n > (1 + o(1))k*/log k &
[Y. Chen 2000]: n > 3k O

[Y. Chen+Firedi 2002]:
short proof for n =ck, c € {3,4,...,} 0

uses Baranyai's partition theorem for K*
[Y. Chen 2000]: n. > (14 0(1))2.62 - k v

uses Baranyai, Kruskal-Katona, Ray-Chaudhuri-Wilson
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Sparse Kneser graphs

e sparsest case n = 2k + 1
o Oy := Kopy1 1 odd graph [Biggs 1979]

e Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]:
Ok = Kak+1., has a Hamilton cycle for all £ > 3.

Oy = K5 9 is Petersen graph

® [Balaban 1973]: £ = 3.4 O
® [Meredith, Lloyd 1972]: kK = 5,6 O

® [Mather 1976]: k =7 0
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The vertices of the graph O, are indexed by the 7-subsets of a 15-set. Two
vertices are adjacent if and only if their labeling sets are disjoint. This paper
demonstrates a Hamiltonian circuit in O .

The following Hamiltonian circuit for Oy was discovered by the methods
of Meredith and Lloyd [1], with the help of a computer.
1234567: 9 110 211 712 3 2 413 914101511
712 815 9 510 615 7 3 8 410 513

614 7 210 212 413 5 1 6 210 312
415 5 111 21513 2 3 6 412 51311
312 5 210 6141311 7 811 410 1 9
13 512 41115 4121513 514 615 9 4
12 513 8151110 9 413 715 8 314 6
9 7 2 8 510 6 1 7 413 5 8 9 5 8
111415 71013 912 41114 612 5 8 15
7 9 6 71312 3 4 7 315 6 313 414
6 411 7 4 212 313 4 513 412 111
14 5§13 1 7101215 5 8 3 6 2 41114
1013 912 11115 914 313 212 1 815
414 310 2 8 1 511 410 3 912 6 2
511 410 3 714 612 511 4 813 7 1
612 5 9 2 812 710 6 912 811 710
1 913 812 7 612 713 8 1 9 310 5§
11 612 715 8 4 9 110 5 2 611 912
10 4 21412 2 4 6 710141511 5 211
8 91012131415 11415 6 812 7 9 14
510 1 6 8 514 2 714 6 9 3 811 7
1013 912151114 413 1 715 514 210
1 715 112 21013 2 6 8 2 710 2 8
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Hn,k VS. Kn,k

Observation: H,, j is bipartite double cover of K, .

Lemma: |f G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.

Corollary: If K, ; has a Hamilton cycle, then H, ; has a
Hamilton cycle or path.

we thus obtain a new proof
for Hamiltonicity of H,, j
B(G) V

G dy e
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e generalized Johnson graphs J, i .

vertices = ([”])

k
edges = pairs of sets with intersection size s
AN B|=s A

e we assume s < k and n > 2k — s + Lis—o)
o Jn o= K, Kneser graphs
e J,rxr—1 = (ordinary) Johnson graphs J, j

e vertex-transitive
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Conjecture [Chen, Lih 1987], [Gould 1991]:
Jn.k.s has a Ham. cycle, unless (n, k,s)=(5,2,0),(5,3,1).
results of [Tang, Liu 1973] settle the case s =k — 1

[Chen, Lih 1987] proved the cases s € {k — 1,k — 2,k — 3}

[Jiang, Ruskey 1994], [Knor 1994] proved that
Jn kk—1 = Jn k-1 1S Hamilton-connected

Theorem [Merino, M., Namrata STOC'23]: @l‘
Jn.k.s has a Ham. cycle, unless (n, k,s)=(5,2,0),(5,3,1).

settles Hamiltonicity of J,, s in full generality
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bipartite Kneser Kneser graphs Johnson graphs
graphs H,, i Kk In.k
[2017] @l‘ [Tang, Liu 1973]
n=[12k+1 BDC n =2k +1

gr

m| @ we settled Lovasz' conjecture for all known families of
vertex-transitive graphs defined by intersecting set systems
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e two sparsest cases n = 2k 4+ 1 and n = 2k + 2 settled by

[M., Nummenpalo, Walczak 2021]4[Johnson 2011] 0

e new proof assumes n > 2k + 3

1. construct a cycle factor  (works for n > 2k + 1)
2. glue cycles together (needs n > 2k + 3)

e requires analyzing the cycles

o model cycles by kinetic system of interacting particles
o reminiscent of the gliders in Conway’'s game of Life

o main technical innovation
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e parenthesis matching with 1=[ and 0=] (cyclically)

e f: complement matched bits

— T
[ L

i 1|

L1 L1 11 []
10100010 1 1
H B B I
1011101000 !
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Cycle factor

e parenthesis matching with 1=[ and 0=] (cyclically)

e f: complement matched bits

1 r 1 1 | ™ T
L1 011171 [] [ [
10100010 1 1
H B B I
1011101000 !
HE B
001000101110 /
H H BN

e f is invertible — partition of K,  into disjoint cycles
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e Two matched bits form a glider

e Glider moves forward by 1 unit per step
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Analyzing the cycles

(n, k) = (15,2)

f time

e Four matched bits form one glider

e Glider moves forward by 2 units per step
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s(t)

o Uniform equation of motion:  5(t) = v -t + s(0)



Glide

o glider :=

e speed := numbers of 1s = number of Os

speed = 1

'S

speed = 2

speed = 3

e Uniform equation of motion:

time ¢ = number of applications of f

—_—

set of matched 1s and Os (same number of each)

s(t)

T ]

A

position (modulo n speed [ [

starting position
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e during overtaking, slower glider stands still for two time steps

e faster glider is boosted by twice the speed of slower glider
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Overtaking of gliders

(n, k) = (15,4)

4

time

58

e non-uniform equations of motion:

Sl(t) = U1 - T

— 81(0)

Sg(t) — U9 - T

- S9 (O)

—2U1 * C1,2

energy conservation!
+201 - €1 2 &Y

c1.2 1= number of overtakings
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Glider partition

time

e gliders can be interleaved in complicated ways
e general glider partition rule works recursively on Motzkin path

e general equations of motion have overtaking counters c; ; for
all pairs of gliders 7, 5
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Cycle invariant

e Lemma: For any cycle in K(n, k) defined by f, the set of
gliders is invariant.

e cycles are characterized by glider speeds and their relative
distances

e don't have full characterization (complicated number theory)

e don't know number of cycles
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e connect cycles of factor to a single Hamilton cycle (tree-like)

e gluing 4-cycles must all be edge-disjoint

\



Open problems

e other special cases of Lovasz: Cayley graphs



Open problems

e other special cases of Lovasz: Cayley graphs

o efficient algorithms: H,, 1, K,



Open problems

e other special cases of Lovasz: Cayley graphs
o efficient algorithms: H,, 1, K,

e Hamilton decomposition: middle levels, (bipartite) Kneser



Open problems

e other special cases of Lovasz: Cayley graphs
o efficient algorithms: H,, 1, K,
e Hamilton decomposition: middle levels, (bipartite) Kneser

e Conjecture [Biggs 1979]: O = Kopy1 1 can be decom-
posed into Hamilton cycles and possibly a perfect match-
ing for kK > 3.



Open problems

other special cases of Lovasz: Cayley graphs
efficient algorithms: H,, x, K,
Hamilton decomposition: middle levels, (bipartite) Kneser

Conjecture [Biggs 1979]: O} = Kop4+1., can be decom-

posed into Hamilton cycles and possibly a perfect match-
ing for kK > 3.

Boolean layer cakes?



Open problems

other special cases of Lovasz: Cayley graphs
efficient algorithms: H,, x, K,
Hamilton decomposition: middle levels, (bipartite) Kneser

Conjecture [Biggs 1979]: O} = Kop4+1., can be decom-
posed into Hamilton cycles and possibly a perfect match-
ing for kK > 3.

Boolean layer cakes?

Conjecture [Ruskey, Savage 1993]: Does every matching of
() extend to a Hamilton cycle?



Thank youl



