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• Definition: A Hamilton path/cycle in a graph
is a path/cycle in a graph that visits every vertex exactly once
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• Problem: Does a graph have a Hamilton path/cyle?

• prototypical NP-complete problem [Karp 1972]

• sufficient conditions [Dirac 1952], [Ore 1960] [Bondy, Chvátal 1976]

• optimization (TSP, approximation) [Christofides 1976], [Karlin,

Klein, Garan 2021], [Svensson, Tarnawski, Végh 2018], [Zenklusen 2018]
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• the dodecahedron is vertex-transitive;

it ‘looks the same’ from every vertex

• advanced version of the Icosian game:

• Conjecture [Lovász 1970]:
Every connected vertex-transitive graph has a Hamilton cycle,
apart from five exceptions (K2, Pet, Cox, Pet

△, Cox△)

Every connected vertex-transitive graph has a Hamilton path.

• Conjecture [Babai 1995]:
There is ε > 0 and infinitely many connected vertex-transitive
graphs with longest cycle (1− ε)n.
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• proved for special cases:

n = p, n = 2p, n = 3p, n = 4p (p prime)

n = p2, n = p3, n = p4

n = 2p2

δ(G) ≥ εn [Christofides, Hladký, Máthé 2014]

[Turner 1967], [Alspach 1979], [Marušič 1985+87], [Chen
1998], [Kutnar, Marušič 2008]

abelian groups

finite p-groups [Witte 1986]

• Cayley graphs

symmetric group + transpositions [Tchuente 1982]
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Combinatorial Gray codes
• Goal: List a class of combinatorial objects such that

consecutive objects differ in a ‘local change’

• allows fast generation algorithms [Knuth TAOCP Vol. 4a]

• Examples:

binary trees by rotations
[Lucas, R. v. Baronaigien, Ruskey 1993]

permutations by adjacent transpositions
[Steinhaus, Johnson, Trotter 196x]

bitstrings by flips [Gray 1953]

spanning trees by edge exchanges
[Cummins 1966], [Holzmann, Harary 1972]

56318247

5613824701010111

01011111
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• Many Gray code problems are hard instances of Lovász’
conjecture

Intersecting set systems

• This talk: Vertex-transitive flip graphs defined by
intersecting set systems

vertices = subsets of ground set [n] = {1, 2, . . . , n}

A

B

edges = pairs of sets (A,B)
satisfying conditions on the
intersection of A and B
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vertices = all subsets of [n] = {1, 2, . . . , n}
edges = pairs (A,B) with |A△B| = 1
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Hypercube
• Folklore: Qn has a Hamilton cycle for every n ≥ 2.

• can be computed in time O(1) per vertex [Gray 1953]

• Theorem [Saad, Schultz 1988]: Qn contains a cycle of every
even length from 4 to 2n.

• Theorem [Simmons 1978]: Qn has a Hamilton path between
any two vertices of opposite parity.

• Theorem [Aubert, Schneider 1982]: The edges ofQn can be par-
titioned into Hamilton cycles and possibly a perfect matching.

• Theorem [Fink 2007]: Every perfect matching of Qn extends
to a Hamilton cycle.

‘Hamilton-laceable’

‘bi-pancyclic’
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• Bipartite Kneser graphs Hn,k

vertices =
(
[n]
k

)
∪
(

[n]
n−k

)
edges = pairs of sets A ⊆ B

• we assume k ≥ 1 and n ≥ 2k + 1

• vertex-transitive Qn

• sparsest case n = 2k + 1:
middle levels conjecture
raised in the 1980s
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The subgraph of Q2k+1 between levels ℓ
and 2k + 1− ℓ has a Hamilton cycle
for all k ≥ 1 and 0 ≤ ℓ ≤ k.

• Theorem [M., Nummenpalo 2020]:
Cycle in H2k+1,k can be computed in time O(1) per vertex.

‘book’ proof:
< 2 pages



Bipartite Kneser results
• Theorem [M. 2016]:

H2k+1,k has a Hamilton cycle for all k ≥ 1.

• Theorem [M., Su 2017]:
Hn,k has a Hamilton cycle for all k ≥ 1 and n ≥ 2k + 1.

• Theorem [Gregor, Merino, M. 2023]:
H2k+1,k is Hamilton-laceable for k ≥ 2.

• Theorem [Gregor, Mička, M. 2023]:
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• Theorem [M. 2016]:

H2k+1,k has a Hamilton cycle for all k ≥ 1.

• Theorem [M., Su 2017]:
Hn,k has a Hamilton cycle for all k ≥ 1 and n ≥ 2k + 1.

• Theorem [Gregor, Merino, M. 2023]:
H2k+1,k is Hamilton-laceable for k ≥ 2.

• Theorem [Gregor, Mička, M. 2023]:
The subgraph of Q2k+1 between levels ℓ
and 2k + 1− ℓ has a Hamilton cycle
for all k ≥ 1 and 0 ≤ ℓ ≤ k.

(vertex-transitive iff l = 0 or ℓ = k)

• Theorem [M., Nummenpalo 2020]:
Cycle in H2k+1,k can be computed in time O(1) per vertex.

‘book’ proof:
< 2 pages
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• we assume k ≥ 1 and n ≥ 2k + 1

• Kneser graph Kn,k

vertices =
(
[n]
k

)
edges = pairs of disjoint sets

{1, 4}

{2, 5}

{2, 3}
{1, 2}

{3, 5}

{3, 4}

{1, 3}

{2, 4}
{1, 5}

{4, 5}
A ∩B = ∅

Petersen graph K5,2

• vertex-transitive

• conjectured to have a Hamilton cycle since 1970s

• notorious exception: Petersen graph K5,2 only admits
Hamilton path
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• [B. Chen, Lih 1987]: n ≥ (1 + o(1))k2/ log k

• [Y. Chen 2000]: n ≥ 3k

• [Y. Chen+Füredi 2002]:
short proof for n = ck, c ∈ {3, 4, . . . , }

uses Baranyai’s partition theorem for Kk
n

• [Y. Chen 2000]: n ≥ (1 + o(1))2.62 · k

uses Baranyai, Kruskal-Katona, Ray-Chaudhuri-Wilson
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• Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]:
Ok = K2k+1,k has a Hamilton cycle for all k ≥ 3.

• sparsest case n = 2k + 1

• Ok := K2k+1,k odd graph [Biggs 1979]

O2 = K5,2 is Petersen graph

• [Balaban 1973]: k = 3, 4

• [Meredith, Lloyd 1972]: k = 5, 6

• [Mather 1976]: k = 7
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• Theorem [M., Nummenpalo, Walczak 2021]:
K2k+2a,k has a Hamilton cycle for all k ≥ 3 and a ≥ 0.

• Theorem [Merino, M., Namrata STOC’23]:
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• settles Hamiltonicity of Kn,k in full generality
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Hn,k vs. Kn,k
• Observation: Hn,k is bipartite double cover of Kn,k.

G

B(G)

• Lemma: If G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.

• Corollary: If Kn,k has a Hamilton cycle, then Hn,k has a
Hamilton cycle or path.

• we thus obtain a new proof
for Hamiltonicity of Hn,k

x y

x′ y′
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Generalized Johnson graphs
• generalized Johnson graphs Jn,k,s

vertices =
(
[n]
k

)
edges = pairs of sets with intersection size s

|A ∩B| = s

• Jn,k,0 = Kn,k Kneser graphs

• Jn,k,k−1 = (ordinary) Johnson graphs Jn,k

• we assume s < k and n ≥ 2k − s+ 1[s=0]

A B

s

• vertex-transitive
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Corollary

[2021][2016]

[2017]

• we settled Lovász’ conjecture for all known families of
vertex-transitive graphs defined by intersecting set systems
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Proof outline for Kn,k

1. construct a cycle factor

2. glue cycles together

• two sparsest cases n = 2k + 1 and n = 2k + 2 settled by

[M., Nummenpalo, Walczak 2021]+[Johnson 2011]

• new proof assumes n ≥ 2k + 3

(works for n ≥ 2k + 1)

(needs n ≥ 2k + 3)

model cycles by kinetic system of interacting particles

main technical innovation

• requires analyzing the cycles

reminiscent of the gliders in Conway’s game of Life
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Cycle factor
• parenthesis matching with 1=[ and 0=] (cyclically)

• f : complement matched bits

1 0 0 0 0 11 0 1 1
[ ] [ ] [ ]] ] [ [

10 011 0 1 01 0
f

• f is invertible → partition of Kn,k into disjoint cycles

0
]

0
]

0 0

10 0 0 01 10 10 10
f
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f time

(n, k) = (15, 2)

• Glider moves forward by 2 units per step

• Four matched bits form one glider

Analyzing the cycles
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Gliders

speed = 1

• glider := set of matched 1s and 0s (same number of each)

• speed := numbers of 1s = number of 0s

speed = 2 speed = 3

s(t) = v · t+ s(0)

t

• Uniform equation of motion:

s(t)

position (modulo n) speed

time t = number of applications of f starting position
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f time
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• during overtaking, slower glider stands still for two time steps
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Overtaking of gliders

f time

(n, k) = (15, 4)

s1(t) = v1 · t+ s1(0)

• non-uniform equations of motion:

s2(t) = v2 · t+ s2(0)

−2v1 · c1,2
+2v1 · c1,2

c1,2 := number of overtakings

energy conservation!
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Glider partition

f time

(n, k) = (15, 6)

• gliders can be interleaved in complicated ways

• general glider partition rule works recursively on Motzkin path

• general equations of motion have overtaking counters ci,j for
all pairs of gliders i, j
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Cycle invariant
• Lemma: For any cycle in K(n, k) defined by f , the set of

gliders is invariant.

• Example: K8,3

1, 1, 1

1, 1, 1

3

2, 1

2, 1

8

8

8

16

16

speeds cycle length

56 =
(
8
3

)
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Cycle invariant
• Lemma: For any cycle in K(n, k) defined by f , the set of

gliders is invariant.

• cycles are characterized by glider speeds and their relative
distances

• don’t have full characterization (complicated number theory)

• don’t know number of cycles
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Gluing cycles

4-cycles exist as n ≥ 2k + 3
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Open problems
• other special cases of Lovász: Cayley graphs

• efficient algorithms: Hn,k, Kn,k

• Hamilton decomposition: middle levels, (bipartite) Kneser

• Conjecture [Ruskey, Savage 1993]: Does every matching of
Qn extend to a Hamilton cycle?

• Boolean layer cakes?

• Conjecture [Biggs 1979]: Ok = K2k+1,k can be decom-
posed into Hamilton cycles and possibly a perfect match-
ing for k ≥ 3.



Thank you!


