Directed max-cut and some generalizations

Anders Yeo

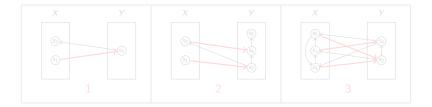
yeo@imada.sdu.dk Department of Mathematics and Computer Science University of southern Denmark Campusvej 55, 5230 Odense M, Denmark

Joint work with: Jiangdong Ai, Argyrios Deligkas, Eduard Eiben, Stefanie Gerke, Gregory Gutin, Philip R. Neary and Yacong Zhou

・ 同 ト ・ ヨ ト ・ ヨ ト

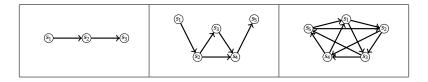
We will consider the directed max-cut problem and some of its generalizations.

What is the directed max-cut for these digraphs? Why?

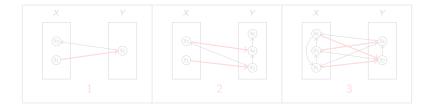


< ロ > < 同 > < 三 > < 三 >

We will consider the directed max-cut problem and some of its generalizations.

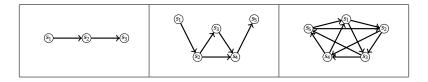


What is the directed max-cut for these digraphs? Why?

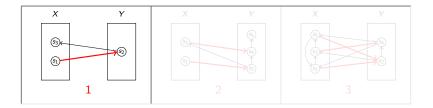


(4月) トイヨト イヨト

We will consider the directed max-cut problem and some of its generalizations.

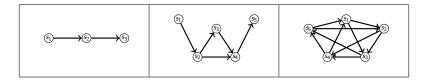


What is the directed max-cut for these digraphs? Why?

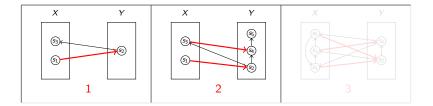


- 4 回 ト 4 三 ト

We will consider the directed max-cut problem and some of its generalizations.

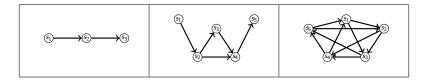


What is the directed max-cut for these digraphs? Why?

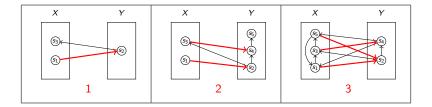


- 4 回 ト 4 三 ト

We will consider the directed max-cut problem and some of its generalizations.



What is the directed max-cut for these digraphs? Why?



< ロ > < 同 > < 三 > < 三 >

Basic bounds

Let mac(D) denote the maximum number of arcs in a (X, Y)-cut in a digraph D and let $a_D(X, Y)$ denote the number of (X, Y)-arcs in D.

Analogously, let mac(G) denote the maximum number of edges in a (X, Y)-cut in a (undirected) graph G.

Theorem 1: $mac(D) \ge \frac{|A(D)|}{4}$ for all digraphs *D*. $mac(G) \ge \frac{|A(G)|}{2}$ for all graphs *G*.

Proof: place every vertex randomely in X or Y with equal probability (50%).

The above bounds are the average number of arcs/edges in the cut. QED

A D D A D D A D D A D D A

Basic bounds

Let mac(D) denote the maximum number of arcs in a (X, Y)-cut in a digraph D and let $a_D(X, Y)$ denote the number of (X, Y)-arcs in D.

Analogously, let mac(G) denote the maximum number of edges in a (X, Y)-cut in a (undirected) graph G.

Theorem 1: $mac(D) \ge \frac{|A(D)|}{4}$ for all digraphs D. $mac(G) \ge \frac{|A(G)|}{2}$ for all graphs G.

Proof: place every vertex randomely in X or Y with equal probability (50%).

The above bounds are the average number of arcs/edges in the cut.

A D D A D D A D D A D D A

Basic bounds

Let mac(D) denote the maximum number of arcs in a (X, Y)-cut in a digraph D and let $a_D(X, Y)$ denote the number of (X, Y)-arcs in D.

Analogously, let mac(G) denote the maximum number of edges in a (X, Y)-cut in a (undirected) graph G.

Theorem 1: $mac(D) \ge \frac{|A(D)|}{4}$ for all digraphs D. $mac(G) \ge \frac{|A(G)|}{2}$ for all graphs G.

Proof: place every vertex randomely in X or Y with equal probability (50%).

The above bounds are the average number of arcs/edges in the cut. $$\mathsf{QED}$$

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If *n* is odd then
$$P(x \in X \& y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is
$$\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$$

A D D A D D A D D A D D A

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If *n* is odd then
$$P(x \in X \And y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is
$$\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$$

イロト イボト イヨト イヨト

Э

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If *n* is odd then
$$P(x \in X \& y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$

イロト イボト イヨト イヨト

3

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If n is odd then
$$P(x \in X \& y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is
$$\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$$

<ロ> (四) (四) (三) (三) (三)

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If n is odd then
$$P(x \in X \And y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is
$$\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$$

<ロ> (四) (四) (三) (三) (三)

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Proof: Randomely place $\lfloor \frac{n}{2} \rfloor$ vertices in X and the remaining vertices in Y.

If n is odd then
$$P(x \in X \And y \in Y) = \frac{\lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil}{n(n-1)} = \frac{1}{4} + \frac{n-1}{4n(n-1)}$$

So the average number of arcs in the cut is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$.

When *n* is even we get that the average is $\frac{|A(D)|}{4} + \frac{|A(D)|}{4(n-1)} \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}.$ QED

イロト 不得 トイヨト イヨト 二日

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Theorem 3: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4\chi(D)}$ for all digraphs D.

Theorem 4 (Edwards, 1973): $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|+1/8}{32}} - \frac{1}{16}$ for all digraphs *D*.

Theorem 5 (Alon, 1996): for some c > 0 we have $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|}{32}} + c|A(D)|^{1/4}$ for all digraphs D.

イロト イボト イヨト イヨト

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Theorem 3: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4\chi(D)}$ for all digraphs D.

Theorem 4 (Edwards, 1973): $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|+1/8}{32}} - \frac{1}{16}$ for all digraphs *D*.

Theorem 5 (Alon, 1996): for some c > 0 we have $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|}{32}} + c|A(D)|^{1/4}$ for all digraphs D.

イロト 不得 トイラト イラト 二日

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Theorem 3: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4\chi(D)}$ for all digraphs D.

Theorem 4 (Edwards, 1973): $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|+1/8}{32} - \frac{1}{16}}$ for all digraphs *D*.

Theorem 5 (Alon, 1996): for some c > 0 we have $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|}{32}} + c|A(D)|^{1/4}$ for all digraphs D.

イロト 不得 トイラト イラト 二日

Theorem 2: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4n}$ for all digraphs D of order n.

Theorem 3: $mac(D) \ge \frac{|A(D)|}{4} + \frac{|A(D)|}{4\chi(D)}$ for all digraphs D.

Theorem 4 (Edwards, 1973): $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|+1/8}{32}} - \frac{1}{16}$ for all digraphs *D*.

Theorem 5 (Alon, 1996): for some c > 0 we have $mac(D) \ge \frac{|A(D)|}{4} + \sqrt{\frac{|A(D)|}{32}} + c|A(D)|^{1/4}$ for all digraphs D.

イロト 不得 トイラト イラト 二日

Question: If D is a eulerian digraph (ie $d^+(x) = d^-(x)$ for all x), what is mac(D) (in terms of mac(G))?

Answer: $mac(D) = \frac{mac(UG(D))}{2}$. Why?

Let G = UG(D) and let (X, Y) be any cut in G.

As $d^+(x) = d^-(x)$ for all $x \in V(D)$ we have $a_D(X, Y) = a_D(Y, X)$ (as any eulerian tour enters and leaves X equally many times in D).

So, there are exactly half as many (X, Y)-arcs in D and there are edges in G.

イロト イボト イヨト イヨト

Regular digraphs

Question: If D is a eulerian digraph (ie $d^+(x) = d^-(x)$ for all x), what is mac(D) (in terms of mac(G))?

Answer: $mac(D) = \frac{mac(UG(D))}{2}$. Why?

Let G = UG(D) and let (X, Y) be any cut in G.

As $d^+(x) = d^-(x)$ for all $x \in V(D)$ we have $a_D(X, Y) = a_D(Y, X)$ (as any eulerian tour enters and leaves X equally many times in D).

So, there are exactly half as many (X, Y)-arcs in D and there are edges in G.

イロト イボト イヨト イヨト

3

Question: If D is a eulerian digraph (ie $d^+(x) = d^-(x)$ for all x), what is mac(D) (in terms of mac(G))?

Answer: $mac(D) = \frac{mac(UG(D))}{2}$. Why?

Let G = UG(D) and let (X, Y) be any cut in G.

As $d^+(x) = d^-(x)$ for all $x \in V(D)$ we have $a_D(X, Y) = a_D(Y, X)$ (as any eulerian tour enters and leaves X equally many times in D).

So, there are exactly half as many (X, Y)-arcs in D and there are edges in G.

イロト 不得 トイラト イラト 一日

Regular tournament

A tournament is an orientation of a complete graph.

Theorem 6: If T is a regular tournament of order n then $mac(T) = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$

Proof: As T is eulerian we note that $mac(T) = \frac{mac(K_n)}{2} = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \frac{1}{2} \cdot \lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$ QED

For a regular tournament T of order n and size m we have $m = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$, so $mac(T) = \lfloor \frac{n^2}{8} \rfloor = \lfloor \frac{m}{4} + \frac{n}{8} \rfloor$.

So, the maximum cut contains slightly more than a quarter of the arcs $(mac(T) \approx \frac{m}{4} + \frac{1+\sqrt{1+8m}}{16} \approx \frac{m}{4} + \sqrt{\frac{m}{32}}).$

This will be useful to know later (and shows the tightness of Theorem 5).

A tournament is an orientation of a complete graph.

Theorem 6: If T is a regular tournament of order n then $mac(T) = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$

Proof: As T is eulerian we note that $mac(T) = \frac{mac(K_n)}{2} = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \frac{1}{2} \cdot \lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$ QED

For a regular tournament T of order n and size m we have $m = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$, so $mac(T) = \lfloor \frac{n^2}{8} \rfloor = \lfloor \frac{m}{4} + \frac{n}{8} \rfloor$.

So, the maximum cut contains slightly more than a quarter of the arcs $(mac(T) \approx \frac{m}{4} + \frac{1+\sqrt{1+8m}}{16} \approx \frac{m}{4} + \sqrt{\frac{m}{32}}).$

This will be useful to know later (and shows the tightness of Theorem 5).

A D D A D D A D D A D D A

A tournament is an orientation of a complete graph.

Theorem 6: If T is a regular tournament of order n then $mac(T) = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$

Proof: As T is eulerian we note that $mac(T) = \frac{mac(K_n)}{2} = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \frac{1}{2} \cdot \lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$ QED

For a regular tournament T of order n and size m we have $m = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$, so $mac(T) = \lfloor \frac{n^2}{8} \rfloor = \lfloor \frac{m}{4} + \frac{n}{8} \rfloor$.

So, the maximum cut contains slightly more than a quarter of the arcs $(mac(T) \approx \frac{m}{4} + \frac{1+\sqrt{1+8m}}{16} \approx \frac{m}{4} + \sqrt{\frac{m}{32}}).$

This will be useful to know later (and shows the tightness of Theorem 5).

A D D A D D A D D A D D A

A tournament is an orientation of a complete graph.

Theorem 6: If T is a regular tournament of order n then $mac(T) = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$

Proof: As *T* is eulerian we note that

$$mac(T) = \frac{mac(K_n)}{2} = \frac{1}{2} \cdot \lceil \frac{n}{2} \rceil \cdot \lfloor \frac{n}{2} \rfloor = \frac{1}{2} \cdot \lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{n^2}{8} \rfloor.$$
 QED

For a regular tournament T of order n and size m we have $m = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$, so $mac(T) = \lfloor \frac{n^2}{8} \rfloor = \lfloor \frac{m}{4} + \frac{n}{8} \rfloor$.

So, the maximum cut contains slightly more than a quarter of the arcs $(mac(T) \approx \frac{m}{4} + \frac{1+\sqrt{1+8m}}{16} \approx \frac{m}{4} + \sqrt{\frac{m}{32}}).$

This will be useful to know later (and shows the tightness of Theorem 5).

(日本) (日本) (日本)

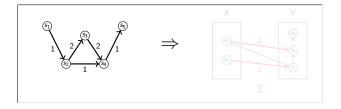
We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

 $w^+(s_2) = 3$ and $w^-(s_2) = 1$.

伺下 イヨト イヨト

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

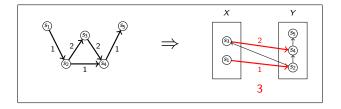


Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

 $w^+(s_2) = 3$ and $w^-(s_2) = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

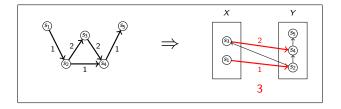


Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

 $w^+(s_2) = 3$ and $w^-(s_2) = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

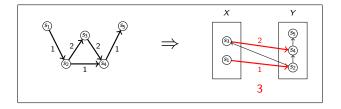


Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

 $w^+(s_2) = 3$ and $w^-(s_2) = 1$.

向下 イヨト イヨト

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.

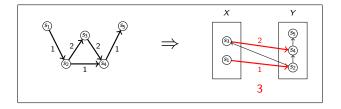


Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

 $w^+(s_2) = 3$ and $w^-(s_2) = 1$.

伺 ト イ ヨ ト イ ヨ ト

We give a weight for each arc and we want to find a cut (X, Y) where the sum of the weights of all (X, Y)-arcs is maximum.



Let $w^+(x)$ denote the sum of the weight on the arcs leaving x and let $w^-(x)$ denote the sum of the weight on the arcs entering x.

$$w^+(s_2) = 3$$
 and $w^-(s_2) = 1$.

If $w^+(x) = w^-(x)$ for all x then the following holds.

$$0 = \sum_{x \in X} w^+(x) - w^-(x) = w_D(X, Y) - w_D(Y, X)$$

So, $mac(D) = \frac{mac(UG(D))}{2}$, where mac(D) (mac(G), resp.) now denotes the maximum weight of a cut in D (G, resp)

イロト イポト イヨト イヨト

If $w^+(x) = w^-(x)$ for all x then the following holds.

$$0 = \sum_{x \in X} w^+(x) - w^-(x) = w_D(X, Y) - w_D(Y, X)$$

So, $mac(D) = \frac{mac(UG(D))}{2}$, where mac(D) (mac(G), resp.) now denotes the maximum weight of a cut in D (G, resp)

イロト イポト イヨト イヨト

If $w^+(x) = w^-(x)$ for all x then the following holds.

$$0 = \sum_{x \in X} w^+(x) - w^-(x) = w_D(X, Y) - w_D(Y, X)$$

So, $mac(D) = \frac{mac(UG(D))}{2}$, where mac(D) (mac(G), resp.) now denotes the maximum weight of a cut in D (G, resp)

<ロ> (四) (四) (三) (三) (三)

If $w^+(x) \neq w^-(x)$ for some x

Let D be an arc-weighted digraph and let w(D) denote the sum of all weights in D.

Let $\theta(D) = \frac{\sum_{x \in V(D)} \max\{0, w^+(x) - w^-(x)\}}{w(D)}$

What is $\theta(D)$ of the shown digraph?

$$\theta(D) = \frac{(1-0)+(3-1)}{7} = \frac{3}{7} \approx 0.43$$

If D is weighted-eulerian $(w^+(x) = w^-(x)$ for all x) then $\theta(D) = 0$.

 $0 \leq heta(D) \leq 1$ and heta(D) tells us how close to weighted-eulerian we are.

Let D be an arc-weighted digraph and let w(D) denote the sum of all weights in D.

.

Let
$$\theta(D) = \frac{\sum_{x \in V(D)} \max\{0, w^+(x) - w^-(x)\}}{w(D)}$$

What is $\theta(D)$ of the shown digraph?

臣

$$\theta(D) = \frac{(1-0)+(3-1)}{7} = \frac{3}{7} \approx 0.43$$

If D is weighted-eulerian $(w^+(x) = w^-(x)$ for all x) then $\theta(D) = 0$.

 $0 \leq heta(D) \leq 1$ and heta(D) tells us how close to weighted-eulerian we are.

Let D be an arc-weighted digraph and let w(D) denote the sum of all weights in D.

.

Let
$$\theta(D) = \frac{\sum_{x \in V(D)} \max\{0, w^+(x) - w^-(x)\}}{w(D)}$$

What is $\theta(D)$ of the shown digraph?

臣

$$\theta(D) = \frac{(1-0)+(3-1)}{7} = \frac{3}{7} \approx 0.43$$

If D is weighted-eulerian $(w^+(x) = w^-(x)$ for all x) then $\theta(D) = 0$.

 $0 \leq heta(D) \leq 1$ and heta(D) tells us how close to weighted-eulerian we are.

Let D be an arc-weighted digraph and let w(D) denote the sum of all weights in D.

.

Let
$$\theta(D) = \frac{\sum_{x \in V(D)} \max\{0, w^+(x) - w^-(x)\}}{w(D)}$$

What is $\theta(D)$ of the shown digraph?

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

$$\theta(D) = \frac{(1-0)+(3-1)}{7} = \frac{3}{7} \approx 0.43$$

If D is weighted-eulerian $(w^+(x) = w^-(x)$ for all x) then $\theta(D) = 0$.

 $0 \leq heta(D) \leq 1$ and heta(D) tells us how close to weighted-eulerian we are.

Let D be an arc-weighted digraph and let w(D) denote the sum of all weights in D.

.

Let
$$\theta(D) = \frac{\sum_{x \in V(D)} \max\{0, w^+(x) - w^-(x)\}}{w(D)}$$

What is $\theta(D)$ of the shown digraph?

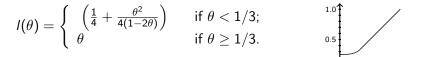
・ 同 ト ・ ヨ ト ・ ヨ ト

$$\theta(D) = \frac{(1-0)+(3-1)}{7} = \frac{3}{7} \approx 0.43$$

If D is weighted-eulerian $(w^+(x) = w^-(x)$ for all x) then $\theta(D) = 0$.

 $0 \le \theta(D) \le 1$ and $\theta(D)$ tells us how close to weighted-eulerian we are.

Theorem 7, [1]: $mac(D) \ge l(\theta(D)) \cdot w(D)$, where



The bound is tight.

So, if $\theta(D) > 0$ we can improve the bound $mac(D) \ge w(D)/4$.

For the digraph on the previous slide we have $mac(D) \ge \frac{3}{7} \times w(D) = 3$.

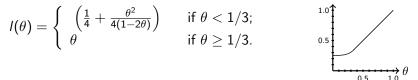
0 5

(ロ) (同) (E) (E) (E) (E)

If $\theta < 1/3$, we use a probabilistic method.

If $\theta \ge 1/3$ we put all vertices, x, with $w^+(x) > w^-(x)$ in X.

Theorem 7, [1]: $mac(D) \ge l(\theta(D)) \cdot w(D)$, where



The bound is tight.

So, if $\theta(D) > 0$ we can improve the bound $mac(D) \ge w(D)/4$.

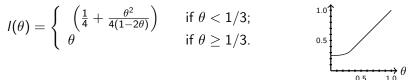
For the digraph on the previous slide we have $mac(D) \geq rac{3}{7} imes w(D) = 3.$

(ロ) (同) (E) (E) (E) (E)

If $\theta < 1/3$, we use a probabilistic method.

If $\theta \ge 1/3$ we put all vertices, x, with $w^+(x) > w^-(x)$ in X.

Theorem 7, [1]: $mac(D) \ge l(\theta(D)) \cdot w(D)$, where



The bound is tight.

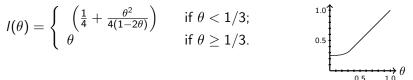
So, if $\theta(D) > 0$ we can improve the bound $mac(D) \ge w(D)/4$.

For the digraph on the previous slide we have $mac(D) \ge \frac{3}{7} \times w(D) = 3$.

(ロ) (同) (E) (E) (E) (E)

If heta < 1/3, we use a probabilistic method. If $heta \geq 1/3$ we put all vertices, x, with $w^+(x) > w^-(x)$ in X

Theorem 7, [1]: $mac(D) \ge l(\theta(D)) \cdot w(D)$, where



The bound is tight.

So, if $\theta(D) > 0$ we can improve the bound $mac(D) \ge w(D)/4$.

For the digraph on the previous slide we have $mac(D) \ge \frac{3}{7} \times w(D) = 3$.

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

If $\theta < 1/3$, we use a probabilistic method. If $\theta \ge 1/3$ we put all vertices, x, with $w^+(x) > w^-(x)$ in X.

Theorem 7 is tight

To show the bound is tight we let D_k be a digraph consisting of two vertex disjoint regular tournament, A_k and B_k , of order k and arc-weights 1.

We then add all arcs from A_k to B_k with weight $Q = \frac{\theta(1-1/k)}{1-\theta}$.

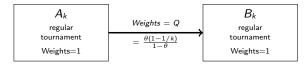
One can then show that $\theta(D_k) = \theta$ and $mac(D_k)$ approaches $l(\theta) \cdot w(D)$, when k goes to infinity.

イロト イポト イヨト イヨト

Theorem 7 is tight

To show the bound is tight we let D_k be a digraph consisting of two vertex disjoint regular tournament, A_k and B_k , of order k and arc-weights 1.

We then add all arcs from A_k to B_k with weight $Q = \frac{\theta(1-1/k)}{1-\theta}$.



One can then show that $\theta(D_k) = \theta$ and $mac(D_k)$ approaches $l(\theta) \cdot w(D)$, when k goes to infinity.

イロト イポト イヨト イヨト

Э

For (unweighted) acyclic digraphs Alon, Bollobas, Gyarfas, Lehel and Scott proved the following

Theorem 8 (Alon et al): There exists a constant k_1^s , such that for every integer $m \ge 1$ there exists an acyclic digraph D_m^s with m arcs and $mac(D_m^s) \le \frac{m}{4} + k_1^s m^{0.8}$.

Theorem 9 (Alon et al): There exists a constant k_2^s , such that $mac(D) \ge \frac{m}{4} + k_2^s m^{0.6}$ for all acyclic digraphs D of size m.

Recall that for general digraphs the regular tournament, T_n , of order n and size m, satisfies $mac(T_n) \approx \frac{m}{4} + \sqrt{\frac{1}{32}} \times m^{0.5}$

So Theorem 9 does not hold for digraph in general, but improves Theorem 5 for acyclic digraphs.

We want to generalize the theorems to the weighted case.

For (unweighted) acyclic digraphs Alon, Bollobas, Gyarfas, Lehel and Scott proved the following

Theorem 8 (Alon et al): There exists a constant k_1^s , such that for every integer $m \ge 1$ there exists an acyclic digraph D_m^s with m arcs and $mac(D_m^s) \le \frac{m}{4} + k_1^s m^{0.8}$.

Theorem 9 (Alon et al): There exists a constant k_2^s , such that $mac(D) \ge \frac{m}{4} + k_2^s m^{0.6}$ for all acyclic digraphs D of size m.

Recall that for general digraphs the regular tournament, T_n , of order n and size m, satisfies $mac(T_n) \approx \frac{m}{4} + \sqrt{\frac{1}{32}} \times m^{0.5}$

So Theorem 9 does not hold for digraph in general, but improves Theorem 5 for acyclic digraphs.

We want to generalize the theorems to the weighted case.

For (unweighted) acyclic digraphs Alon, Bollobas, Gyarfas, Lehel and Scott proved the following

Theorem 8 (Alon et al): There exists a constant k_1^s , such that for every integer $m \ge 1$ there exists an acyclic digraph D_m^s with m arcs and $mac(D_m^s) \le \frac{m}{4} + k_1^s m^{0.8}$.

Theorem 9 (Alon et al): There exists a constant k_2^s , such that $mac(D) \ge \frac{m}{4} + k_2^s m^{0.6}$ for all acyclic digraphs D of size m.

Recall that for general digraphs the regular tournament, T_n , of order *n* and size *m*, satisfies $mac(T_n) \approx \frac{m}{4} + \sqrt{\frac{1}{32}} \times m^{0.5}$

So Theorem 9 does not hold for digraph in general, but improves Theorem 5 for acyclic digraphs.

We want to generalize the theorems to the weighted case.

For (unweighted) acyclic digraphs Alon, Bollobas, Gyarfas, Lehel and Scott proved the following

Theorem 8 (Alon et al): There exists a constant k_1^s , such that for every integer $m \ge 1$ there exists an acyclic digraph D_m^s with m arcs and $mac(D_m^s) \le \frac{m}{4} + k_1^s m^{0.8}$.

Theorem 9 (Alon et al): There exists a constant k_2^s , such that $mac(D) \ge \frac{m}{4} + k_2^s m^{0.6}$ for all acyclic digraphs D of size m.

Recall that for general digraphs the regular tournament, T_n , of order *n* and size *m*, satisfies $mac(T_n) \approx \frac{m}{4} + \sqrt{\frac{1}{32}} \times m^{0.5}$

So Theorem 9 does not hold for digraph in general, but improves Theorem 5 for acyclic digraphs.

We want to generalize the theorems to the weighted case.

We in fact generalize to multi-digraphs and arc-weighted digraphs.

Theorem 10, [1]: There exists a constant k_1 , such that for every integer $m \ge 1$ there exists an acyclic multi-digraph D_m with m arcs and $mac(D_m) \le \frac{m}{4} + k_1 m^{0.75}$.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all acyclic arc-weighted digraphs D with $w \ge 1$.

Theorem 10 and 11 hold for both multi-digraphs and arc-weighted digraphs ($w \ge 1$).

Why do we need $w \ge 1$?

(日本) (日本) (日本)

We in fact generalize to multi-digraphs and arc-weighted digraphs.

Theorem 10, [1]: There exists a constant k_1 , such that for every integer $m \ge 1$ there exists an acyclic multi-digraph D_m with m arcs and $mac(D_m) \le \frac{m}{4} + k_1 m^{0.75}$.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all acyclic arc-weighted digraphs D with $w \ge 1$.

Theorem 10 and 11 hold for both multi-digraphs and arc-weighted digraphs ($w \ge 1$).

Why do we need $w \ge 1$?

• (1) • (

Why do we need $w \ge 1$?

Otherwise Theorem 11 is not true.

 $\begin{array}{l} \mbox{Theorem 10: There exists acyclic multi-digraphs:}\\ mac(D_m) \leq \frac{m}{4} + k_1 m^{0.75}.\\ \mbox{Theorem 11: For all acyclic arc-weighted digraphs}\\ (w \geq 1): \qquad mac(D) \geq \frac{w(D)}{4} + k_2 w(D)^{0.6}. \end{array}$

Consider a digraph with one arc of weight w such that $w < k_2^{2.5}$ which implies that $k_2w(D)^{0.6} = k_2w^{0.6} > w = w(D) = mac(D)$

We first outline the proof of Theorem 10.

Let $V(D) = \{v_1, v_2, \ldots, v_n\}$ and add an acyclic tournament on $I_i = (v_i, v_{i+1}, \ldots, v_{i+q-1})$ where all arcs go "forward" in the order of I_i and all indices are taken modulo n.

This gives us a regular multi-digraph (where n and q will be decided later).

Why do we need $w \ge 1$?

Otherwise Theorem 11 is not true.

 $\begin{array}{l} \mbox{Theorem 10: There exists acyclic multi-digraphs:}\\ mac(D_m) \leq \frac{m}{4} + k_1 m^{0.75}.\\ \mbox{Theorem 11: For all acyclic arc-weighted digraphs}\\ (w \geq 1): \qquad mac(D) \geq \frac{w(D)}{4} + k_2 w(D)^{0.6}. \end{array}$

Consider a digraph with one arc of weight w such that $w < k_2^{2.5}$ which implies that $k_2w(D)^{0.6} = k_2w^{0.6} > w = w(D) = mac(D)$

We first outline the proof of Theorem 10.

Let $V(D) = \{v_1, v_2, \dots, v_n\}$ and add an acyclic tournament on $I_i = (v_i, v_{i+1}, \dots, v_{i+q-1})$ where all arcs go "forward" in the order of I_i and all indices are taken modulo n.

This gives us a regular multi-digraph (where n and q will be decided later).

イロト イポト イヨト イヨト

(v1 (v2 (v3 (v4 (v5 (v6 (v7)

The result we call D_m^* , which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_m .

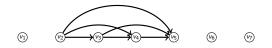
As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

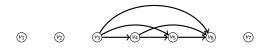


The result we call D_m^* , which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.



We now delete all "backward" arcs and call the result D_m .

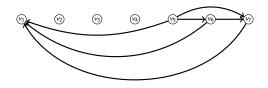
As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

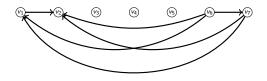


The result we call D_m^* , which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

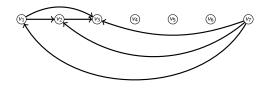


The result we call D_m^* , which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \leq n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \leq \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

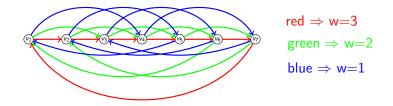


The result we call D_m^* , which is a regular multi-digraph.

We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \leq n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \leq \frac{nq^2}{4}$.

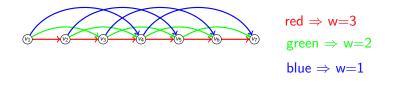
So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.



We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \le n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \le \frac{nq^2}{4}$.

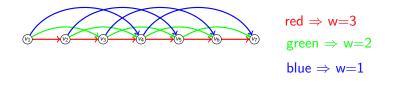
So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.



We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \leq n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \leq \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

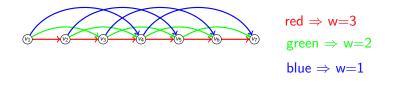


We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \leq n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \leq \frac{nq^2}{4}$.

So, $mac(D_m) \le mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \le \frac{nq^2}{8}$.

向下 イヨト イヨト



We now delete all "backward" arcs and call the result D_m .

As $A(D_m^*)$ can be partitioned into n tournaments on q vertices we note that $mac(UG(D_m^*)) \leq n \cdot mac(K_q) = n \cdot \lfloor \frac{q^2}{4} \rfloor \leq \frac{nq^2}{4}$.

So, $mac(D_m) \leq mac(D_m^*) = \frac{mac(UG(D_m^*))}{2} \leq \frac{nq^2}{8}$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Theorem 10 (The boring computations)

$$\begin{aligned} |A(D_m)| &= |A(D_m^*)| - 1 \cdot (q-1) - 2 \cdot (q-2) - \cdots (q-1) \cdot 1 \\ &= n \binom{q}{2} - \sum_{i=1}^{q-1} i(q-i) \\ &= \frac{nq(q-1)}{2} - q \sum_{i=1}^{q-1} i + \sum_{i=1}^{q-1} i^2 \\ &= \dots = \frac{nq^2}{2} - \frac{nq}{2} - \frac{q^3}{6} + \frac{q}{6} \end{aligned}$$

Letting $q = \lfloor \sqrt{n} \rfloor$ and optimizing we get

$$\max(D_m) \leq \frac{nq^2}{8} = \frac{|A(D_m)|}{4} + \frac{3nq+q^3-q}{24} \\ \leq \frac{|A(D_m)|}{4} + |A(D_m)|^{0.75} \times \frac{7.75}{24(\frac{1}{6})^{0.75}}$$

One can then extend this to all values of *m*...

医下颌 医下颌

Theorem 10 (The boring computations)

$$\begin{aligned} |A(D_m)| &= |A(D_m^*)| - 1 \cdot (q-1) - 2 \cdot (q-2) - \cdots (q-1) \cdot 1 \\ &= n \binom{q}{2} - \sum_{i=1}^{q-1} i(q-i) \\ &= \frac{nq(q-1)}{2} - q \sum_{i=1}^{q-1} i + \sum_{i=1}^{q-1} i^2 \\ &= \dots = \frac{nq^2}{2} - \frac{nq}{2} - \frac{q^3}{6} + \frac{q}{6} \end{aligned}$$

Letting $q = \lfloor \sqrt{n} \rfloor$ and optimizing we get

$$\begin{array}{ll} {\it mac}(D_m) & \leq & \frac{nq^2}{8} & = & \frac{|A(D_m)|}{4} + \frac{3nq+q^3-q}{24} \\ & \leq & \frac{|A(D_m)|}{4} + |A(D_m)|^{0.75} \times \frac{7.75}{24\left(\frac{1}{6}\right)^{0.75}} \end{array}$$

One can then extend this to all values of *m*...

A 3 >

Theorem 10 (The boring computations)

$$\begin{aligned} |A(D_m)| &= |A(D_m^*)| - 1 \cdot (q-1) - 2 \cdot (q-2) - \cdots (q-1) \cdot 1 \\ &= n \binom{q}{2} - \sum_{i=1}^{q-1} i(q-i) \\ &= \frac{nq(q-1)}{2} - q \sum_{i=1}^{q-1} i + \sum_{i=1}^{q-1} i^2 \\ &= \dots = \frac{nq^2}{2} - \frac{nq}{2} - \frac{q^3}{6} + \frac{q}{6} \end{aligned}$$

Letting $q = \lfloor \sqrt{n} \rfloor$ and optimizing we get

$$\begin{array}{ll} {\it mac}(D_m) & \leq & \frac{nq^2}{8} = & \frac{|A(D_m)|}{4} + \frac{3nq+q^3-q}{24} \\ & \leq & \frac{|A(D_m)|}{4} + |A(D_m)|^{0.75} \times \frac{7.75}{24\left(\frac{1}{6}\right)^{0.75}} \end{array}$$

One can then extend this to all values of m....

A 3 3

Recall Theorem 11.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path containing ν vertices.

Let c_{ν} be the largest number such that $mac(D) \ge c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν .

Theorem 12, [1]:
$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}.$$

Proving Theorem 12 is the main part in proving Theorem 11. We will not give the proof of Theorem 12, but just note that the approach is completely different then for Theorem 10 (the Alon result).

イロト イボト イヨト イヨト

Recall Theorem 11.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path containing ν vertices.

Let c_{ν} be the largest number such that $mac(D) \ge c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν .

Theorem 12, [1]:
$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}$$
.

Proving Theorem 12 is the main part in proving Theorem 11. We will not give the proof of Theorem 12, but just note that the approach is completely different then for Theorem 10 (the Alon result).

Recall Theorem 11.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

In order to prove this we need a result on arc-weighted acyclic digraphs with maximum path containing ν vertices.

Let c_{ν} be the largest number such that $mac(D) \ge c_{\nu} \times w(D)$ for all arc-weighted acyclic digraphs D with maximum path order at most ν .

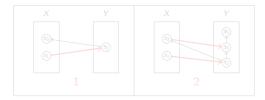
Theorem 12, [1]:
$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}$$
.

Proving Theorem 12 is the main part in proving Theorem 11. We will not give the proof of Theorem 12, but just note that the approach is completely different then for Theorem 10 (the Alon result).

Of seperate interest we can show that $c_2 = 1$, $c_3 = c_4 = \frac{1}{2}$, $c_5 = c_6 = \frac{2}{5}$, $c_7 = \frac{3}{8}$, $c_8 = \frac{4}{11}$, $c_9 = \frac{13}{37}$, $c_{10} = \frac{9}{26}$ and $c_{11} = \frac{31}{92}$.

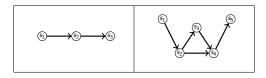
Recall two of the digraphs from the first slide.

What is the directed max-cut for these digraphs?

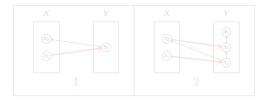


- 4 同 ト 4 三 ト 4 三 ト

Of seperate interest we can show that $c_2 = 1$, $c_3 = c_4 = \frac{1}{2}$, $c_5 = c_6 = \frac{2}{5}$, $c_7 = \frac{3}{8}$, $c_8 = \frac{4}{11}$, $c_9 = \frac{13}{37}$, $c_{10} = \frac{9}{26}$ and $c_{11} = \frac{31}{92}$. Recall two of the digraphs from the first slide.

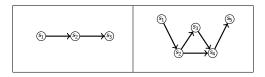


What is the directed max-cut for these digraphs?

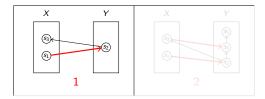


伺 ト イヨト イヨト

Of seperate interest we can show that $c_2 = 1$, $c_3 = c_4 = \frac{1}{2}$, $c_5 = c_6 = \frac{2}{5}$, $c_7 = \frac{3}{8}$, $c_8 = \frac{4}{11}$, $c_9 = \frac{13}{37}$, $c_{10} = \frac{9}{26}$ and $c_{11} = \frac{31}{92}$. Recall two of the digraphs from the first slide.

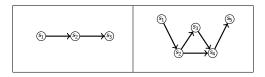


What is the directed max-cut for these digraphs?

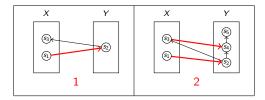


伺 ト イヨト イヨト

Of seperate interest we can show that $c_2 = 1$, $c_3 = c_4 = \frac{1}{2}$, $c_5 = c_6 = \frac{2}{5}$, $c_7 = \frac{3}{8}$, $c_8 = \frac{4}{11}$, $c_9 = \frac{13}{37}$, $c_{10} = \frac{9}{26}$ and $c_{11} = \frac{31}{92}$. Recall two of the digraphs from the first slide.



What is the directed max-cut for these digraphs?



向下 イヨト イヨト

Theorem 11: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

Theorem 12:

$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}.$$

イロト イヨト イヨト イヨト

Proof: Let *D* be a arc-weighted acyclic digraphs *D*.

Let $P = p_1 p_2 p_3 \dots p_n$ be a longest path in D.

We consider the cases when $w(P) \le w(D)^{0.6}$ and $w(P) \ge w(D)^{0.6}$ seperately.

Theorem 11: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

Theorem 12:

$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}.$$

Proof: Let D be a arc-weighted acyclic digraphs D.

Let $P = p_1 p_2 p_3 \dots p_n$ be a longest path in D.

We consider the cases when $w(P) \le w(D)^{0.6}$ and $w(P) \ge w(D)^{0.6}$ seperately.

Case 1: $w(P) \le w(D)^{0.6}$.

Theorem 12:
$$c_{\nu} \geq \frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times \nu^{2/3}}.$$

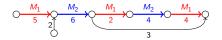
向下 イヨト イヨト

As all weights are at least one, we have $|A(P)| \le w(P) \le w(D)^{0.6}$. So Theorem 12 implies,

$$\begin{array}{ll} {\it mac}(D) & \geq & \left(\frac{1}{4} + \frac{1}{8 \times 3^{2/3} \times |A(P)|^{2/3}}\right) w(D) \\ \\ & \geq & \frac{w(D)}{4} + \frac{w(D)}{8 \times 3^{2/3} \times w(D)^{0.4}} \\ \\ & \geq & \frac{w(D)}{4} + k_2 \cdot w(D)^{0.6} \end{array}$$

Theorem 11, Case 2 proof

Case 2: $w(P) \ge w(D)^{0.6}$.



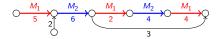
イロト イポト イヨト イヨト

Let M_1 and M_2 be two matchings in A(P) such that $A(M_1) \cup A(M_2) = A(P)$.

W.l.o.g assume that $w(M_1) \ge w(M_2)$, and for each arc, uv, in M_1 assign u to X and v to Y with probability 1/2 and assign u to Y and v to X with probability 1/2. Any vertex not in $V(M_1)$ gets assigned to X or Y with probability 1/2.

The average weight of the cut (X, Y) is the following.

$$\frac{w(D)}{4} + \frac{w(M_1)}{4} \ge \frac{w(D)}{4} + \frac{w(P)/2}{4} \ge \frac{w(D)}{4} + \frac{w(D)^{0.6}}{8}$$



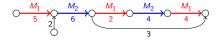
イロト イポト イヨト イヨト

Let M_1 and M_2 be two matchings in A(P) such that $A(M_1) \cup A(M_2) = A(P)$.

W.l.o.g assume that $w(M_1) \ge w(M_2)$, and for each arc, uv, in M_1 assign u to X and v to Y with probability 1/2 and assign u to Y and v to X with probability 1/2. Any vertex not in $V(M_1)$ gets assigned to X or Y with probability 1/2.

The average weight of the cut (X, Y) is the following.

$$\frac{w(D)}{4} + \frac{w(M_1)}{4} \ge \frac{w(D)}{4} + \frac{w(P)/2}{4} \ge \frac{w(D)}{4} + \frac{w(D)^{0.6}}{8}$$



イロト イポト イヨト イヨト 二日

Let M_1 and M_2 be two matchings in A(P) such that $A(M_1) \cup A(M_2) = A(P)$.

W.l.o.g assume that $w(M_1) \ge w(M_2)$, and for each arc, uv, in M_1 assign u to X and v to Y with probability 1/2 and assign u to Y and v to X with probability 1/2. Any vertex not in $V(M_1)$ gets assigned to X or Y with probability 1/2.

The average weight of the cut (X, Y) is the following.

$$\frac{w(D)}{4} + \frac{w(M_1)}{4} \geq \frac{w(D)}{4} + \frac{w(P)/2}{4} \geq \frac{w(D)}{4} + \frac{w(D)^{0.6}}{8}$$

Theorem 10, [1]: There exists a constant k_1 , such that for every integer $m \ge 1$ there exists an acyclic multi-digraph D_m with m arcs and $mac(D_m) \le \frac{m}{4} + k_1 m^{0.75}$.

Theorem 11, [1]: There exists a constant k_2 , such that $mac(D) \ge \frac{w(D)}{4} + k_2w(D)^{0.6}$ for all arc-weighted acyclic digraphs $D \ (w \ge 1)$.

Open Problem: Close the gap between 0.6 and 0.75 for arc-weighted acyclic digraphs *D*.

・ 同 ト ・ ヨ ト ・ ヨ ト

For simple digraphs the following holds.

Theorem 8 (Alon et al): There exists a constant k_1^s , such that for every integer $m \ge 1$ there exists an acyclic digraph D_m^s with m arcs and $mac(D_m^s) \le \frac{m}{4} + k_1^s m^{0.8}$.

Theorem 9 (Alon et al): There exists a constant k_2^s , such that $mac(D) \ge \frac{m}{4} + k_2^s m^{0.6}$ for all acyclic digraphs D of size m.

Open Problem: Close the gap between 0.6 and 0.8 for simple acyclic digraphs *D*.

(1日) (1日) (1日)

This completes the first part of the talk, which was based on the paper

[1] Jiangdong Ai, Stefanie Gerke, Gregory Gutin, Anders Yeo and Yacong Zhou. *Bounds on Maximum Weight Directed Cut.* Submitted.

The second part of the talk will be based on the paper

[2] Argyrios Deligkas, Eduard Eiben, Gregory Gutin, Philip R. Neary and Anders Yeo *Complexity of Efficient Outcomes in Binary-Action Polymatrix Games with Implications for Coordination Problems.* Accepted at IJCAI 2023.

イロト イボト イヨト イヨト

This completes the first part of the talk, which was based on the paper

[1] Jiangdong Ai, Stefanie Gerke, Gregory Gutin, Anders Yeo and Yacong Zhou. *Bounds on Maximum Weight Directed Cut.* Submitted.

The second part of the talk will be based on the paper

[2] Argyrios Deligkas, Eduard Eiben, Gregory Gutin, Philip R. Neary and Anders Yeo *Complexity of Efficient Outcomes in Binary-Action Polymatrix Games with Implications for Coordination Problems.* Accepted at IJCAI 2023.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

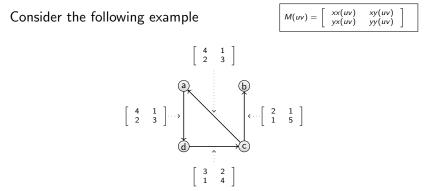
Let D be a digraph, such that for each arc $a \in A(D)$ we are given values xx(a), xy(a), yx(a) and yy(a). We want to find a partition (X, Y) of V(D) that maximizes $\sum_{a \in A(D)} val(a)$, where

$$val(uv) = \begin{cases} xx(uv) & \text{if } u, v \in X \\ xy(uv) & \text{if } u \in X \text{ and } v \in Y \\ yx(uv) & \text{if } u \in Y \text{ and } v \in X \\ yy(uv) & \text{if } u, v \in Y \end{cases}$$

We denote the values (xx(a), xy(a), yx(a), yy(a)) by

$$M(uv) = \left[\begin{array}{cc} xx(uv) & xy(uv) \\ yx(uv) & yy(uv) \end{array}\right]$$

Example

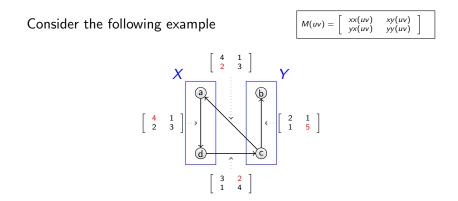


What is an optimal partition?

The optimal partition is $(\{a, d\}, \{b, c\})$ with value 13.

(4月) トイヨト イヨト

Example



What is an optimal partition?

The optimal partition is $(\{a, d\}, \{b, c\})$ with value 13.

In order to obtain a dichotomy, we will let \mathcal{F} denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$.

So, if
$$\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$
 then the problem is NP-hard.

We give a dichotomy for this problem.

Image: A image: A

In order to obtain a dichotomy, we will let ${\cal F}$ denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$.

So, if $\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$ then the problem is NP-hard.

We give a dichotomy for this problem.

In order to obtain a dichotomy, we will let ${\cal F}$ denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$.

So, if
$$\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$
 then the problem is NP-hard.

We give a dichotomy for this problem.

• • = • • = •

In order to obtain a dichotomy, we will let ${\cal F}$ denote the list of matrices that are allowed.

We assume that if a matrix $M \in \mathcal{F}$ is allowed to be used then every multiple of M is also allowed to be used.

Example: The directed max-cut problem (we count the number of (X, Y)-arcs) can be reduced to the case when $\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$.

So, if
$$\mathcal{F} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$
 then the problem is NP-hard.

We give a dichotomy for this problem.

We are looking at the problem $MWDP(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f : A(D) \to \mathcal{F}$ and $c : A(D) \to \mathbb{R}^+$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given $\ensuremath{\mathcal{F}}$ we define the following 3 properties.

(a): $m_{11} + m_{22} \ge m_{12} + m_{21}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (b): $m_{11} \ge \max\{m_{12}, m_{21}, m_{22}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (c): $m_{22} \ge \max\{m_{11}, m_{12}, m_{21}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. Theorem 15, [2]: $MWDP(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

Dichotomy

We are looking at the problem $MWDP(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f : A(D) \to \mathcal{F}$ and $c : A(D) \to \mathbb{R}^+$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given $\ensuremath{\mathcal{F}}$ we define the following 3 properties.

(a): $m_{11} + m_{22} \ge m_{12} + m_{21}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (b): $m_{11} \ge \max\{m_{12}, m_{21}, m_{22}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (c): $m_{22} \ge \max\{m_{11}, m_{12}, m_{21}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. Theorem 15, [2]: $MWDP(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

Dichotomy

We are looking at the problem $MWDP(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f : A(D) \to \mathcal{F}$ and $c : A(D) \to \mathbb{R}^+$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given ${\mathcal F}$ we define the following 3 properties.

(a): $m_{11} + m_{22} \ge m_{12} + m_{21}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (b): $m_{11} \ge \max\{m_{12}, m_{21}, m_{22}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (c): $m_{22} \ge \max\{m_{11}, m_{12}, m_{21}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$.

Theorem 15, [2]: $MWDP(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Dichotomy

We are looking at the problem $MWDP(\mathcal{F})$ (Maximum Weighted Digraph Partition).

We are given a digraph, D, and functions $f : A(D) \to \mathcal{F}$ and $c : A(D) \to \mathbb{R}^+$, such that the matrix $c(a) \cdot f(a)$ is used on arc a.

Given ${\mathcal F}$ we define the following 3 properties.

(a): $m_{11} + m_{22} \ge m_{12} + m_{21}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (b): $m_{11} \ge \max\{m_{12}, m_{21}, m_{22}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$. (c): $m_{22} \ge \max\{m_{11}, m_{12}, m_{21}\}$ for all matrices $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \in \mathcal{F}$.

Theorem 15, [2]: $MWDP(\mathcal{F})$ is polynomial if Property (a), Property (b) or Property (c) holds and NP-hard otherwise.

(日) (注) (日) (日)

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

イロト イボト イヨト イヨト

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (*s*, *t*)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

A D D A D D A D D A D D A

臣

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

A D D A D D A D D A D D A

Э

We will not go through the proof of Theorem 15, but instead give some applications.

However, note that if Property (b) or Property (c) hold then the problem is trivially polynomial (by letting X = V(D) or Y = V(D)).

If Property (a) holds then we can reduce the problem to finding a (s, t)-minimum cut in an auxilary digraph.

The NP-hardness results require looking at a number of cases and using different techniques for each.

One can also show that the same dichotomy holds even if we require D to be symmetric (or require it to be oriented).

Depending on time, we now give some applications of the dichotomy...

A D D A D D A D D A D D A

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $uv \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_u(uv) = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be the matrix associated with edge uv, such that u gets pay-off m_{ij} if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_v(uv) = \begin{bmatrix} m'_{11} & m'_{12} \\ m'_{21} & m'_{22} \end{bmatrix}$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $uv \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_u(uv) = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be the matrix associated with edge uv, such that u gets pay-off m_{ij} if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_v(uv) = \begin{bmatrix} m'_{11} & m'_{12} \\ m'_{21} & m'_{22} \end{bmatrix}$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

A D D A D D A D D A D D A

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $uv \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_u(uv) = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be the matrix associated with edge uv, such that u gets pay-off m_{ij} if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_v(uv) = \begin{bmatrix} m'_{11} & m'_{12} \\ m'_{21} & m'_{22} \end{bmatrix}$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

<ロ> (四) (四) (三) (三) (三)

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $uv \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

Let $M_u(uv) = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be the matrix associated with edge uv, such that u gets pay-off m_{ij} if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_v(uv) = \begin{bmatrix} m'_{11} & m'_{12} \\ m'_{21} & m'_{22} \end{bmatrix}$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

イロン イボン イモン イモン 三日

We are given a number of players, which we think of as vertices in a graph, G. Each player has to chose Strategy 1 or Stratergy 2.

An edge $uv \in A(D)$ indicates that there is a pay-off depending on the stratergies players u and v have chosen.

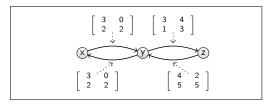
Let $M_u(uv) = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be the matrix associated with edge uv, such that u gets pay-off m_{ij} if and only if player u choses Stratergy i and player v choses Stratergy j.

Analogously, we define $M_v(uv) = \begin{bmatrix} m'_{11} & m'_{12} \\ m'_{21} & m'_{22} \end{bmatrix}$ to indicate player v's pay-off.

We want to know which stratergies should be played to maximize the overall pay-out.

イロン イボン イモン イモン 三日

Maybe z's payout is twice as important as everyone elses. So,...



We set c(xy) = 1, c(yx) = 1, c(yz) = 1 and c(zy) = 2

The above is an instance of MWDSP({ R_1, R_2, R_3 }), where $R_1 = \begin{bmatrix} 3 & 0\\ 2 & 2 \end{bmatrix}$, $R_2 = \begin{bmatrix} 3 & 4\\ 1 & 3 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 4 & 2\\ 5 & 5 \end{bmatrix}$.

MWDSP($\{R_1, R_2, R_3\}$) is a polynomial time solvable problem, as R_1 , R_2 and R_3 all satisfy Property (a).

The optimum is for x and y to play strategy 1, and z strategy 2 and the payout is $3 + 3 + 4 + 2 \cdot 5 = 20$.

Our dichotomy gives a dichotomy for Poly-matrix games.

<ロ> (四) (四) (三) (三) (三)

Maybe z's payout is twice as important as everyone elses. So,...

$$c(xy) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix} \& c(yz) = 1$$

$$(x) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 \end{bmatrix} \& c(zy) = 2$$

$$c(yx) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 5 & 5 \end{bmatrix} \& c(zy) = 2$$

We set c(xy) = 1, c(yx) = 1, c(yz) = 1 and c(zy) = 2

The above is an instance of MWDSP({ R_1, R_2, R_3 }), where $R_1 = \begin{bmatrix} 3 & 0\\ 2 & 2 \end{bmatrix}$, $R_2 = \begin{bmatrix} 3 & 4\\ 1 & 3 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 4 & 2\\ 5 & 5 \end{bmatrix}$.

MWDSP($\{R_1, R_2, R_3\}$) is a polynomial time solvable problem, as R_1 , R_2 and R_3 all satisfy Property (a).

The optimum is for x and y to play strategy 1, and z strategy 2 and the payout is $3 + 3 + 4 + 2 \cdot 5 = 20$.

Our dichotomy gives a dichotomy for Poly-matrix games.

<ロ> (四) (四) (三) (三) (三)

Maybe z's payout is twice as important as everyone elses. So,...

$$c(xy) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix} \& c(yz) = 1$$

$$(x) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$c(yx) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 5 & 5 \end{bmatrix} \& c(zy) = 2$$

We set c(xy) = 1, c(yx) = 1, c(yz) = 1 and c(zy) = 2

The above is an instance of MWDSP({ R_1, R_2, R_3 }), where $R_1 = \begin{bmatrix} 3 & 0\\ 2 & 2 \end{bmatrix}$, $R_2 = \begin{bmatrix} 3 & 4\\ 1 & 3 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 4 & 2\\ 5 & 5 \end{bmatrix}$.

MWDSP($\{R_1, R_2, R_3\}$) is a polynomial time solvable problem, as R_1 , R_2 and R_3 all satisfy Property (a).

The optimum is for x and y to play strategy 1, and z strategy 2 and the payout is $3 + 3 + 4 + 2 \cdot 5 = 20$.

Our dichotomy gives a dichotomy for Poly-matrix games.

<ロ> (四) (四) (三) (三) (三)

Maybe z's payout is twice as important as everyone elses. So,...

$$c(xy) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix} \& c(yz) = 1$$

$$1 \bigotimes_{x} (y) (z) = 1$$

$$c(yx) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 5 & 5 \end{bmatrix} \& c(zy) = 2$$

We set c(xy) = 1, c(yx) = 1, c(yz) = 1 and c(zy) = 2

The above is an instance of MWDSP({ R_1, R_2, R_3 }), where $R_1 = \begin{bmatrix} 3 & 0\\ 2 & 2 \end{bmatrix}$, $R_2 = \begin{bmatrix} 3 & 4\\ 1 & 3 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 4 & 2\\ 5 & 5 \end{bmatrix}$.

MWDSP($\{R_1, R_2, R_3\}$) is a polynomial time solvable problem, as R_1 , R_2 and R_3 all satisfy Property (a).

The optimum is for x and y to play strategy 1, and z strategy 2 and the payout is $3 + 3 + 4 + 2 \cdot 5 = 20$.

Our dichotomy gives a dichotomy for Poly-matrix games.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Maybe z's payout is twice as important as everyone elses. So,...

$$c(xy) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix} \& c(yz) = 1$$

$$(x) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$c(yx) = 1 \& \begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 5 & 5 \end{bmatrix} \& c(zy) = 2$$

We set c(xy) = 1, c(yx) = 1, c(yz) = 1 and c(zy) = 2

The above is an instance of MWDSP({ R_1, R_2, R_3 }), where $R_1 = \begin{bmatrix} 3 & 0\\ 2 & 2 \end{bmatrix}$, $R_2 = \begin{bmatrix} 3 & 4\\ 1 & 3 \end{bmatrix}$ and $R_3 = \begin{bmatrix} 4 & 2\\ 5 & 5 \end{bmatrix}$.

MWDSP($\{R_1, R_2, R_3\}$) is a polynomial time solvable problem, as R_1 , R_2 and R_3 all satisfy Property (a).

The optimum is for x and y to play strategy 1, and z strategy 2 and the payout is $3 + 3 + 4 + 2 \cdot 5 = 20$.

Our dichotomy gives a dichotomy for Poly-matrix games.

This problem was originally raised when all matrices have zero's in the off-digaonal $\left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right)$, which our dichotomy now proves is polynomial.

Our results also indicate why "coordination-games" are easy and "anti-coordination-games" are difficult (in general).

Our results can also be used to determine the complexity of maximizing the potential of the game.

We will not go into what these game-theoretical terms mean....

This problem was originally raised when all matrices have zero's in the off-digaonal $\left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right)$, which our dichotomy now proves is polynomial.

Our results also indicate why "coordination-games" are easy and "anti-coordination-games" are difficult (in general).

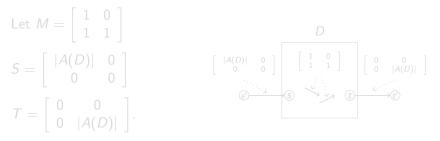
Our results can also be used to determine the complexity of maximizing the potential of the game.

We will not go into what these game-theoretical terms mean....

ヨト イヨト イヨト

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition (X_1, X_2) with the fewest number of arcs from X_1 to X_2 .

This is equivalent to finding the largest number of arc-disjoint paths from *s* to *t* (by Menger's Theorem).

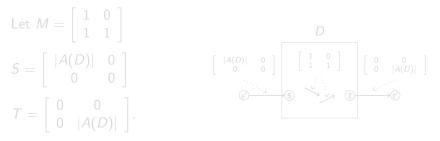


Now the maximum value we can obtain is 3|A(D)| minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial.

A (10) × (10) × (10) ×

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition (X_1, X_2) with the fewest number of arcs from X_1 to X_2 .

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).

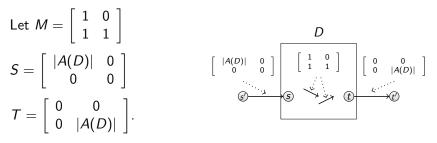


Now the maximum value we can obtain is 3|A(D)| minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial.

伺下 イヨト イヨト

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition (X_1, X_2) with the fewest number of arcs from X_1 to X_2 .

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).

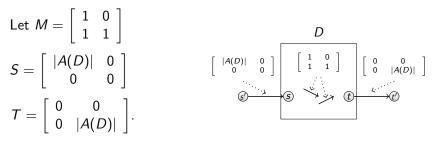


Now the maximum value we can obtain is 3|A(D)| minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given a digraph, D, with $s, t \in V(D)$, find a (s, t)-partition (X_1, X_2) with the fewest number of arcs from X_1 to X_2 .

This is equivalent to finding the largest number of arc-disjoint paths from s to t (by Menger's Theorem).



Now the maximum value we can obtain is 3|A(D)| minus the size of a minimum (s, t)-cut. So by our dichotomy result this is polynomial.

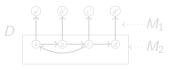
Image: A Image: A

Given a graph, G, and an integer k, find a vertex set $X \subseteq V(G)$ such that the induced subgraph G[X] has average degree strictly greater than k.

Let
$$M_1 = \begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$ and $\mathcal{F} = \{M_1, M_2\}$.

Let D be any orientation of G after adding a pendent edge to each vertex (|V(D)| = 2|V(G)|).

Associate M_1 to each pendent arc and M_2 to all other arcs of D.



< ∃⇒

This gives us an instance of $MWDP(\mathcal{F})$ and let (X, Y) be an optimal solution. The value of this is the following $(x = |X \cap V(G)| \text{ and } y = |Y \cap V(G)|).$

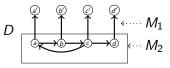
 $s = k \cdot x + 2e(Y, Y) = k|V(D)| - k \cdot y + 2e(Y, Y).$

Given a graph, G, and an integer k, find a vertex set $X \subseteq V(G)$ such that the induced subgraph G[X] has average degree strictly greater than k.

Let
$$M_1 = \begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$ and $\mathcal{F} = \{M_1, M_2\}.$

Let D be any orientation of G after adding a pendent edge to each vertex (|V(D)| = 2|V(G)|).

Associate M_1 to each pendent arc and M_2 to all other arcs of D.



This gives us an instance of $MWDP(\mathcal{F})$ and let (X, Y) be an optimal solution. The value of this is the following $(x = |X \cap V(G)| \text{ and } y = |Y \cap V(G)|)$. $s = k \cdot x + 2e(Y, Y) = k|V(D)| - k \cdot y + 2e(Y, Y)$.

So, s > k|V(D)| if and only if 2e(Y, Y) > k|Y|.

s = k|V(D)| - k|Y| + 2e(Y, Y).

This is equivalent with
$$k < \frac{2e(Y,Y)}{|Y|} = \frac{\sum_{y \in Y} d_Y(y)}{|Y|} = Avg-deg(Y).$$

So, there exists a subgraph with average degree greater than k if and only if the solution to $MWDP(\mathcal{F})$ is greater than k|V(D)|.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

So, s > k|V(D)| if and only if 2e(Y, Y) > k|Y|.

This is equivalent with
$$k < \frac{2e(Y,Y)}{|Y|} = \frac{\sum_{y \in Y} d_Y(y)}{|Y|} = Avg-deg(Y).$$

So, there exists a subgraph with average degree greater than k if and only if the solution to $MWDP(\mathcal{F})$ is greater than k|V(D)|.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

So, s > k|V(D)| if and only if 2e(Y, Y) > k|Y|.s = k|V(D)| - k|Y| + 2e(Y, Y).

This is equivalent with
$$k < \frac{2e(Y,Y)}{|Y|} = \frac{\sum_{y \in Y} d_Y(y)}{|Y|} = Avg-deg(Y).$$

So, there exists a subgraph with average degree greater than k if and only if the solution to $MWDP(\mathcal{F})$ is greater than k|V(D)|.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

イロト イポト イヨト イヨト

So, s > k|V(D)| if and only if 2e(Y, Y) > k|Y|.

This is equivalent with
$$k < \frac{2e(Y,Y)}{|Y|} = \frac{\sum_{y \in Y} d_Y(y)}{|Y|} = Avg-deg(Y).$$

So, there exists a subgraph with average degree greater than k if and only if the solution to $MWDP(\mathcal{F})$ is greater than k|V(D)|.

By our dichotomy this implies that the Max-average-degree problem is polynomial.

(日本) (日本) (日本)

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph G[X] is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as e(X, X)/|X| is maximum if and only if 2e(X, X)/|X| is maximum.

So, by our dichotomy result this problem is also polynomial.

イロト イボト イヨト イヨト

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph G[X] is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as e(X,X)/|X| is maximum if and only if 2e(X,X)/|X| is maximum.

So, by our dichotomy result this problem is also polynomial.

Given a graph, G, find a vertex set $X \subseteq V(G)$ such that the number of edges divided by the number of vertices in the induced subgraph G[X] is maximum possible.

This is polynomial by the above result on the Max-average-degree problem as e(X, X)/|X| is maximum if and only if 2e(X, X)/|X| is maximum.

So, by our dichotomy result this problem is also polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a 2-edge-colored graph, G, find a partition (X_1, X_2) which maximizes the sum of the number of edges in X_1 of color one and the number of edges in X_2 of color two.

Let
$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathcal{F} = \{M_1, M_2\}.$

By associating M_1 to any orientation of each edge of color one and associating M_2 to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

(4月) トイヨト イヨト

Given a 2-edge-colored graph, G, find a partition (X_1, X_2) which maximizes the sum of the number of edges in X_1 of color one and the number of edges in X_2 of color two.

Let
$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathcal{F} = \{M_1, M_2\}.$

By associating M_1 to any orientation of each edge of color one and associating M_2 to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

(4月) トイヨト イヨト

Given a 2-edge-colored graph, G, find a partition (X_1, X_2) which maximizes the sum of the number of edges in X_1 of color one and the number of edges in X_2 of color two.

Let
$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathcal{F} = \{M_1, M_2\}.$

By associating M_1 to any orientation of each edge of color one and associating M_2 to any orientation of each edge of color two we note that our dichotomy implies that this problem is polynomial.

ヨト イヨト イヨト

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

One could maybe try to generalize the results to 3-partitions (using 3×3 matrices), but this is maybe difficult and I do not have any immediate applications.

But it would be interesting to see if there are any other problems that can be solved using the above dichotomy.

Or one could try to prove the same dichotomy, where we do not require that if a matrix belongs to \mathcal{F} then all multiples of that matrix is also allowed to be used in the digraph.

向下 イヨト イヨト

The End

イロン 不同 とくほど 不同 とう

臣

Any questions?