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Coloring and graphs on surfaces
Theorem (The Four Color Theorem)

Every planar graph is 4-colorable.

Theorem (Heawood’s formula)

Every graph drawn on a surface of Euler genus g is

e

-colorable.

Theorem (Grétzsch theorem)

Every planar triangle-free graph is 3-colorable.



The key question

Problem

Can the Four Color Theorem and Grétzsch theorem be
generalized to other surfaces?

Perhaps with a few exceptional graphs?

Answer
No.




Non-3-colorable triangle-free graphs
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Mycielsky graphs of odd cycles Non-bipartite quadrangulations
of the projective plane



Non-4-colorable graphs
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Triangulations of non-3-colorable

Triangulations with two adjacent .
quadrangulations.

vertices of odd degree.



The key question, revisited

For a surface ¥, girth v, number of colors k:

Problem (Structural characterization)

How do the minimal non-k-colorable graphs of girth at least ~
drawn on ¥ look like?

Problem (Algorithms)

Given a graph G of girth at least v drawn on X, can we decide
whether G is k-colorable in polynomial time?



Finitely many obstructions

For a surface ¥, girth v, number of colors k:

Theorem (Thomassen’93, Gallai’63, Thomassen’03)

If e k>5,o0r
@ y>4andk =4, or
@ y>5andk =3,

then there are only finitely many minimal non-k-colorable
graphs of girth at least ~ drawn on ¥..

Corollary

In all these situations, colorability can be tested by checking the
presence of finitely many obstructions.



Coloring graphs on surfaces

Critical graphs/complexity of coloring:

girth | 4 4 >5
colors
3 oo/NPC | oo but structured/P | finite/P
4 oo/open finitely many/P
>5 finitely many/P




Minimal non-3-colorable triangle-free graphs

A graph G drawn on a surface is an s-near-quadrangulation if

> lfl<s

feF(G)|fl4

Theorem (D., Kral’, Thomas’09)

For every surface ¥, there exists s = O(g(X)) such that every
minimal non-3-colorable triangle-free graph drawn on ¥ without
non-contractible 4-cycles is an s-near-quadrangulation.



Reducing to a near-quadrangulation

Theorem (D., Kral’, Thomas’09)

For every surface ¥, there exists s and a linear-time algorithm
that given a triangle-free graph G drawn on ¥ without
non-contractible 4-cycles either

@ correctly decides that G is 3-colorable, or

@ returns a subgraph H C G such that

e every 3-coloring of H extends to a 3-coloring of G, and
e H is an s-near-quadrangulation.



Coloring near-quadrangulations

Theorem (D., Kral’, Thomas’09)
For every surface ¥ and every s, there exists a linear-time
algorithm that given an s-near-quadrangulation H of ¥ either
@ finds a 3-coloring of H, or
@ correctly decides that H is not 3-colorable.

Corollary (D., Kral’, Thomas’09)

For every surface ¥, there exists s and a linear-time algorithm
that given a triangle-free graph G drawn on ¥ correctly decides
whether G is 3-colorable.

Problem

Does there exist a simple algorithm to 3-color
near-quadrangulations?




Flows

Definition

A flow with boundary d : V(G) — Z is a function ¢ from
directed edges of G to Z such that

Q (u,v) = —¢(v,u) for every uv € E(G), and
Q forevery u e V(G),
> p(u,v) = d(u).

uveE(G)
(<k)-flow: |¥(u, v)| < k, nowhere-zero: 1(u, v) # 0.




Planar case: Flow-coloring duality

Theorem (Tutte’54)

A plane graph H is 3-colorable if and only if its dual graph G
has a nowhere-zero (< 1)-flow with boundary divisible by 3.

cl ¢




A 3-coloring algorithm

A function d : V(G) — Z is a plausible boundary if
® > ey dlv)=0and
foreach v € V(G),
@ 3|d(v),
@ d(v) =degv (mod 2), and
@ |d(V)| < degv.

Algorithm (3-colorability of a plane graph H)

For every plausible boundary d for the dual G of H:

@ If there exists a nowhere-zero (<1)-flow in G with
boundary d, return true.

Otherwise, return false.



Number of choices for d?

Possible boundary values b at a vertex of degree k:

@ 3|b,
@ b=k (mod 2), and
@ |b| <k.
k 3 (4] 5 6 7 8 9
choices +3|0|+3|0,+6 | +3 | 0,+6 | +3,+9
number of choices | 2 | 1| 2 3 2 3 4

Corollary

For an s-near-quadrangulation H, the number q(H) of plausible
boundaries for the dual of H is bounded by a function of s.




Applications

For plane s-near-quadrangulations:
@ Precoloring extension from a connected subgraph (D.,
Lidicky’15)
@ Precoloring extension from a subgraph with two
components (D., Pekarek’21).

For triangle-free graphs drawn on the torus:

@ Practical linear-time algorithm for 3-colorability (D.,
Pekarek’21)

@ Implemented by Urmanov’22.



Flow over cycles

For a cycle K in a graph H and flow # in its dual, let

Y/K= > (e
ecE(K)
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Generalized version of Tutte’s duality

The following claims are equivalent for a graph H drawn on an
orientable surface:

@ the graph H is 3-colorable

@ there exists a nowhere-zero (<1)-flow ¢ in the dual G of H
such that

3ly/K

for every cycle K in H.

Observation

The condition holds for contractible cycles iff the boundary of v
is divisible by 3.



Integral cycles

A 1-cycle in H is a flow with zero boundary. For a flow v in the
dual G of H,

/K= Y K(e) y(e).

ecE(H)




Linearity

If Ky and K> are 1-cycles and n is an integer, then
@ Ky + K> is a 1-cycle and

V/(Ki + K2) = /Ky + ¢/ K.

@ nKj is a 1-cycle and

¥/(nK1) = n- /Ky,




The space of cycles

For a graph H drawn on an orientable surface, let

@ C(H) be the set of all 1-cycles, and

@ B(H) C C(H) the set of linear combinations (with integer
coefficients) of face boundaries of H, called 1-boundaries.

A cycle K in H belongs to B(H) iff K separates the surface. In
particular, all contractible cycles belong to B(H).




Generators

For a graph H on an orientable surface of Euler genus g:

Lemma

There exist non-contractible cycles Ki, ..., Ky in H (generators
of the homology group of H) such that

g
C(H) = {B+Zn,~K,~:n1,...,ngeZ,BeB(H)}.

i=1




General surfaces, fewer cycles

Lemma

The following claims are equivalent for a graph H drawn on an
orientable surface and generators Ky, ..., Ky of its homology
group:

@ the graph H is 3-colorable

@ there exists a nowhere-zero (< 1)-flow ¢ with boundary
divisible by 3 in the dual G of H such that

3¢ /Ki

fori=1,...,g.



Algorithm for general surfaces

A function r : [g] — Z is plausible if for each i, 3|r(i), |Ki| = r(i)
(mod 2), and |r(i)| < |Kj.

Algorithm (3-colorability of a graph H on orientable surface)

@ Find generators Ky, ..., Ky of the homology group of H.
@ For

e every plausible boundary d for the dual G of H and
e every plausibler : [g] — Z

check:

o If there exists a nowhere-zero (<1) floww in G with
boundary d such thaty/K; = r(i) fori=1,...,g, return
true.

Otherwise, return false.

@ O(q(H) - n9) choices.
@ How to test the existence of the flow?
o Idea from Chambers, Erickson, Nayyeri’'10, Venkatesan’83.



Finding the flow

Problem

Given
@ a plausible boundary d in the dual G of H and
@ aplausible functionr : [g] — Z,

decide efficiently whether there exists a nowhere-zero
(<1)-flow ) in G with boundary d such that )/ K; = r(i) for

i=1,...,9.

@ A flow iy with these properties always exists (sum of paths
and dual generators).

@ ) — 9y has zero boundary (it is a 1-cycle) and ¢/K; = 0 for
i=1,...,9.

@ Equivalently, ¢ — ¢y € B(G)!



Finding the flow, simplified

Problem

Given a graph G on a surface and a flow v in G, decide
efficiently whether there exists a 1-boundary R € B(G) such
that v»o + R is a nowhere-zero (< 1)-flow.

R= > aof

feF(G)

—1 < p(e) + an —ap < 1
('\1 FZ a, < ap+(1—-1vo(e))
ap, < ar, + (vo(e) + 1)

Solution: ar = dg(fo, f)



Is it nowhere-zero?

Suppose (¢ + R)(e) = 0:
+1 + +

$o/C = (o + R)/C#[C| (mod2)
@ Implies that v + R is not a nowhere-zero (< 1)-flow for any
R € B(G).
@ Will not happen because of the parity conditions in
plausibility.



The following are equivalent for plausible d and r:

@ There exists a nowhere-zero (< 1)-flow ¢ with boundary d
such that ¢/K; = r(i) for each i.

@ The corresponding auxiliary graph does not contain a
negative length cycle.

@ For every cycle C = B+ ), niK; with B € B(H),

(B,d)+ > (i) <|C].



Polytope of realizable flows

For a plausible boundary d in G, let

ug(n,... ng) = BénBiFH)‘B+ Zn,-K,-‘ — (B, d).
i

Py {xeRg Z i) < ug(n )foreverynezg}.

The following claims are equivalent:

@ There exists a nowhere-zero (< 1)-flow 1) with boundary d
such that 3|y /K; for each i.

@ 7P, contains a point x with integer coordinates such that

x(i) = 3(|Ki| mod 2) (mod 6) fori=1,...,g.

@ (P4 — 3(|K.| mod 2))/6 contains a point with integer
coordinates.



An improved algorithm

To decide whether a graph H on an orientable surface of Euler
genus g is 3-colorable:

Algorithm (Bang, D., Heath, Lidicky’22)

For every plausible boundary d for the dual G of H,

@ if(Py — 3(|K.| mod 2))/6 contains a point with integer
coordinates, return true.

Otherwise, return false.

Time complexity:
o q(H) - O(|H|?polylog|H])
@ Worse than O(|H|) algorithm of D., Kral’, Thomas.
@ But easy to implement.



Variations

@ Include choice of d in the polytope.

e Removes the dependency on the lengths of the faces, but
increases the dimension.

@ Non-orientable surfaces (D., Moore, Sereni).
@ Homomorphism to Cy. 1 instead of 3-coloring.

@ More generally, circular (a : b)-coloring for a odd.

e aeven fails (0 cannot have different parity from all allowed
flow values).

@ Any number of precolored vertices.



Edgewidth of non-3-colorable quadrangulations

Edgewidth: The length of the shortest non-contractible cycle.

Theorem (Hutchinson’94)

If H is a quadrangulation of an orientable surface of Euler
genus g and the edgewidth of H is at least exp(©(g)), then H is
3-colorable.

Theorem (D., Kral’, Thomas’09)
Edgewidth ©(g®) suffices, even for triangle-free graphs.




Polytope width

Definition
The width of a polytope P C RY is the infimum of

C,X) — min(C, X
X ~ (e

overc e Z9\ {(0,...,0)}.

width /IC1




Polytopes without integer points

Theorem (Kannan, Lovasz’88, Rudelson’00)

If a bounded polytope in RY does not contain an integer point,
then it has width O(g*/?).

Conjecture (Banaszczyk et al.’99)

If a bounded polytope in RY does not contain an integer point,
then it has width O(glog g).



Width of the polytope of realizable circulations

Lemma (Bang, D., Heath, Lidicky’22)

If H is an s-near-quadrangulation and the dual G of H has a
(<1)-flow with boundary d, then the width of Py is
Q(ew(H)) — O(s).

Recall:
Theorem (D., Krél’, Thomas’09)

For every surface ¥, there exists s = O(g(X)) such that every
minimal non-3-colorable triangle-free graph drawn on ¥ without
non-contractible 4-cycles is an s-near-quadrangulation.

Corollary

If H is a triangle-free graph drawn on an orientable surface of
Euler genus g and the edgewidth of H is at least ©(g*/®), then
H is 3-colorable.




Quadrangulations

Observation
If H is a quadrangulation, then P is centrally symmetric.

Theorem (Banaszczyk et al’96)

If a centrally symmetric bounded polytope in R9 does not
contain an integer point, then it has width O(glog g).

Corollary

If H is a quadrangulation of an orientable surface of Euler
genus g and the edgewidth of H is at least ©(glog g), then H is
3-colorable.



Conclusions

Summary

One part of D., Kral’, Thomas’09 argument (dealing with

near-quadrangulations) can be simplified and better understood
via nowhere-zero flows.

Problem

What about the other part:

@ A practical algorithm to reduce the problem of 3-colorability

of a triangle-free graph H to a near-quadrangulation
Hy C H?

@ Tight bounds on q(Hp) ?

Theorem (D., Pekérek)

If H is drawn on the torus, then q(Hp) < 16.



Conclusions

The concept of homology is useful even if you have no idea
what it is.




