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Coloring and graphs on surfaces

Theorem (The Four Color Theorem)

Every planar graph is 4-colorable.

Theorem (Heawood’s formula)

Every graph drawn on a surface of Euler genus g is⌊
7 +

√
24g + 1
2

⌋
-colorable.

Theorem (Grötzsch theorem)

Every planar triangle-free graph is 3-colorable.



The key question

Problem

Can the Four Color Theorem and Grötzsch theorem be
generalized to other surfaces?
Perhaps with a few exceptional graphs?

Answer

No.



Non-3-colorable triangle-free graphs



Non-4-colorable graphs



The key question, revisited

For a surface Σ, girth γ, number of colors k :

Problem (Structural characterization)

How do the minimal non-k-colorable graphs of girth at least γ
drawn on Σ look like?

Problem (Algorithms)

Given a graph G of girth at least γ drawn on Σ, can we decide
whether G is k-colorable in polynomial time?



Finitely many obstructions

For a surface Σ, girth γ, number of colors k :

Theorem (Thomassen’93, Gallai’63, Thomassen’03)

If k ≥ 5, or
γ ≥ 4 and k = 4, or
γ ≥ 5 and k = 3,

then there are only finitely many minimal non-k-colorable
graphs of girth at least γ drawn on Σ.

Corollary

In all these situations, colorability can be tested by checking the
presence of finitely many obstructions.



Coloring graphs on surfaces

Critical graphs/complexity of coloring:

PPPPPPPPPcolors
girth

3 4 ≥ 5

3 ∞/NPC ∞ but structured/P finite/P
4 ∞/open finitely many/P
≥ 5 finitely many/P



Minimal non-3-colorable triangle-free graphs

Definition

A graph G drawn on a surface is an s-near-quadrangulation if∑
f∈F (G),|f |6=4

|f | ≤ s.

Theorem (D., Král’, Thomas’09)

For every surface Σ, there exists s = O(g(Σ)) such that every
minimal non-3-colorable triangle-free graph drawn on Σ without
non-contractible 4-cycles is an s-near-quadrangulation.



Reducing to a near-quadrangulation

Theorem (D., Král’, Thomas’09)

For every surface Σ, there exists s and a linear-time algorithm
that given a triangle-free graph G drawn on Σ without
non-contractible 4-cycles either

correctly decides that G is 3-colorable, or
returns a subgraph H ⊆ G such that

every 3-coloring of H extends to a 3-coloring of G, and
H is an s-near-quadrangulation.



Coloring near-quadrangulations

Theorem (D., Král’, Thomas’09)

For every surface Σ and every s, there exists a linear-time
algorithm that given an s-near-quadrangulation H of Σ either

finds a 3-coloring of H, or
correctly decides that H is not 3-colorable.

Corollary (D., Král’, Thomas’09)

For every surface Σ, there exists s and a linear-time algorithm
that given a triangle-free graph G drawn on Σ correctly decides
whether G is 3-colorable.

Problem

Does there exist a simple algorithm to 3-color
near-quadrangulations?



Flows

Definition

A flow with boundary d : V (G)→ Z is a function ψ from
directed edges of G to Z such that

1 ψ(u, v) = −ψ(v ,u) for every uv ∈ E(G), and
2 for every u ∈ V (G),∑

uv∈E(G)

ψ(u, v) = d(u).

(≤k)-flow: |ψ(u, v)| ≤ k , nowhere-zero: ψ(u, v) 6= 0.



Planar case: Flow-coloring duality

Theorem (Tutte’54)

A plane graph H is 3-colorable if and only if its dual graph G
has a nowhere-zero (≤1)-flow with boundary divisible by 3.



A 3-coloring algorithm

Definition

A function d : V (G)→ Z is a plausible boundary if∑
v∈V (G) d(v) = 0 and

for each v ∈ V (G),
3|d(v),
d(v) ≡ deg v (mod 2), and
|d(v)| ≤ deg v .

Algorithm (3-colorability of a plane graph H)

For every plausible boundary d for the dual G of H:
If there exists a nowhere-zero (≤1)-flow in G with
boundary d, return true.

Otherwise, return false.



Number of choices for d?

Possible boundary values b at a vertex of degree k :
3|b,
b ≡ k (mod 2), and
|b| ≤ k .

k 3 4 5 6 7 8 9
choices ±3 0 ±3 0,±6 ±3 0,±6 ±3,±9

number of choices 2 1 2 3 2 3 4

Corollary

For an s-near-quadrangulation H, the number q(H) of plausible
boundaries for the dual of H is bounded by a function of s.



Applications

For plane s-near-quadrangulations:
Precoloring extension from a connected subgraph (D.,
Lidický’15)
Precoloring extension from a subgraph with two
components (D., Pekárek’21).

For triangle-free graphs drawn on the torus:
Practical linear-time algorithm for 3-colorability (D.,
Pekárek’21)
Implemented by Urmanov’22.



Flow over cycles

For a cycle K in a graph H and flow ψ in its dual, let

ψ/K =
∑

e∈E(K )

ψ(e?)



Generalized version of Tutte’s duality

Lemma

The following claims are equivalent for a graph H drawn on an
orientable surface:

the graph H is 3-colorable
there exists a nowhere-zero (≤1)-flow ψ in the dual G of H
such that

3|ψ/K

for every cycle K in H.

Observation

The condition holds for contractible cycles iff the boundary of ψ
is divisible by 3.



Integral cycles

Definition

A 1-cycle in H is a flow with zero boundary. For a flow ψ in the
dual G of H,

ψ/K =
∑

e∈E(H)

K (e) · ψ(e?).



Linearity

Observation

If K1 and K2 are 1-cycles and n is an integer, then
K1 + K2 is a 1-cycle and

ψ/(K1 + K2) = ψ/K1 + ψ/K2.

nK1 is a 1-cycle and

ψ/(nK1) = n · ψ/K1.



The space of cycles

Definition

For a graph H drawn on an orientable surface, let
C(H) be the set of all 1-cycles, and
B(H) ⊆ C(H) the set of linear combinations (with integer
coefficients) of face boundaries of H, called 1-boundaries.

Observation

A cycle K in H belongs to B(H) iff K separates the surface. In
particular, all contractible cycles belong to B(H).



Generators

For a graph H on an orientable surface of Euler genus g:

Lemma

There exist non-contractible cycles K1, . . . , Kg in H (generators
of the homology group of H) such that

C(H) =

{
B +

g∑
i=1

niKi : n1, . . . ,ng ∈ Z,B ∈ B(H)

}
.



General surfaces, fewer cycles

Lemma

The following claims are equivalent for a graph H drawn on an
orientable surface and generators K1, . . . , Kg of its homology
group:

the graph H is 3-colorable
there exists a nowhere-zero (≤1)-flow ψ with boundary
divisible by 3 in the dual G of H such that

3|ψ/Ki

for i = 1, . . . ,g.



Algorithm for general surfaces

A function r : [g]→ Z is plausible if for each i , 3|r(i), |Ki | ≡ r(i)
(mod 2), and |r(i)| ≤ |Ki |.

Algorithm (3-colorability of a graph H on orientable surface)

Find generators K1, . . . , Kg of the homology group of H.
For

every plausible boundary d for the dual G of H and
every plausible r : [g]→ Z

check:
If there exists a nowhere-zero (≤1)-flow ψ in G with
boundary d such that ψ/Ki = r(i) for i = 1, . . . ,g, return
true.

Otherwise, return false.

O(q(H) · ng) choices.
How to test the existence of the flow?

Idea from Chambers, Erickson, Nayyeri’10, Venkatesan’83.



Finding the flow

Problem

Given
a plausible boundary d in the dual G of H and
a plausible function r : [g]→ Z,

decide efficiently whether there exists a nowhere-zero
(≤1)-flow ψ in G with boundary d such that ψ/Ki = r(i) for
i = 1, . . . ,g.

A flow ψ0 with these properties always exists (sum of paths
and dual generators).
ψ − ψ0 has zero boundary (it is a 1-cycle) and ψ/Ki = 0 for
i = 1, . . . ,g.
Equivalently, ψ − ψ0 ∈ B(G)!



Finding the flow, simplified

Problem

Given a graph G on a surface and a flow ψ0 in G, decide
efficiently whether there exists a 1-boundary R ∈ B(G) such
that ψ0 + R is a nowhere-zero (≤1)-flow.

R =
∑

f∈F (G)

af∂f

−1 ≤ ψ0(e) + af1 − af2 ≤ 1
af1 ≤ af2 + (1− ψ0(e))

af2 ≤ af1 + (ψ0(e) + 1)

Solution: af = d`(f0, f ).



Is it nowhere-zero?

Suppose (ψ0 + R)(e) = 0:

ψ0/C = (ψ0 + R)/C 6≡ |C| (mod 2)

Implies that ψ0 + R is not a nowhere-zero (≤1)-flow for any
R ∈ B(G).
Will not happen because of the parity conditions in
plausibility.



Summary

The following are equivalent for plausible d and r :
There exists a nowhere-zero (≤1)-flow ψ with boundary d
such that ψ/Ki = r(i) for each i .
The corresponding auxiliary graph does not contain a
negative length cycle.
For every cycle C = B +

∑
i niKi with B ∈ B(H),

〈B,d〉+
∑

i

ni r(i) ≤ |C|.



Polytope of realizable flows

For a plausible boundary d in G, let

ud (n1, . . . ,ng) = min
B∈B(H)

∣∣∣B +
∑

i

niKi

∣∣∣− 〈B,d〉.
Pd =

{
x ∈ Rg :

g∑
i=1

n(i) · x(i) ≤ ud (n) for every n ∈ Zg

}
.

Observation

The following claims are equivalent:
1 There exists a nowhere-zero (≤1)-flow ψ with boundary d

such that 3|ψ/Ki for each i.
2 Pd contains a point x with integer coordinates such that

x(i) ≡ 3(|Ki | mod 2) (mod 6) for i = 1, . . . ,g.

3 (Pd − 3(|K?| mod 2))/6 contains a point with integer
coordinates.



An improved algorithm

To decide whether a graph H on an orientable surface of Euler
genus g is 3-colorable:

Algorithm (Bang, D., Heath, Lidický’22)

For every plausible boundary d for the dual G of H,
if (Pd − 3(|K?| mod 2))/6 contains a point with integer
coordinates, return true.

Otherwise, return false.

Time complexity:
q(H) ·O(|H|2polylog|H|)
Worse than O(|H|) algorithm of D., Král’, Thomas.
But easy to implement.



Variations

Include choice of d in the polytope.
Removes the dependency on the lengths of the faces, but
increases the dimension.

Non-orientable surfaces (D., Moore, Sereni).
Homomorphism to C2k+1 instead of 3-coloring.
More generally, circular (a : b)-coloring for a odd.

a even fails (0 cannot have different parity from all allowed
flow values).

Any number of precolored vertices.



Edgewidth of non-3-colorable quadrangulations

Edgewidth: The length of the shortest non-contractible cycle.

Theorem (Hutchinson’94)

If H is a quadrangulation of an orientable surface of Euler
genus g and the edgewidth of H is at least exp(Θ(g)), then H is
3-colorable.

Theorem (D., Král’, Thomas’09)

Edgewidth Θ(g3) suffices, even for triangle-free graphs.



Polytope width

Definition

The width of a polytope P ⊂ Rg is the infimum of

max
x∈P
〈c, x〉 −min

x∈P
〈c, x〉

over c ∈ Zg \ {(0, . . . ,0)}.



Polytopes without integer points

Theorem (Kannan, Lovász’88, Rudelson’00)

If a bounded polytope in Rg does not contain an integer point,
then it has width O(g4/3).

Conjecture (Banaszczyk et al.’99)

If a bounded polytope in Rg does not contain an integer point,
then it has width O(g log g).



Width of the polytope of realizable circulations

Lemma (Bang, D., Heath, Lidický’22)

If H is an s-near-quadrangulation and the dual G of H has a
(≤1)-flow with boundary d, then the width of Pd is
Ω(ew(H))−O(s).

Recall:

Theorem (D., Král’, Thomas’09)

For every surface Σ, there exists s = O(g(Σ)) such that every
minimal non-3-colorable triangle-free graph drawn on Σ without
non-contractible 4-cycles is an s-near-quadrangulation.

Corollary

If H is a triangle-free graph drawn on an orientable surface of
Euler genus g and the edgewidth of H is at least Θ(g4/3), then
H is 3-colorable.



Quadrangulations

Observation

If H is a quadrangulation, then P is centrally symmetric.

Theorem (Banaszczyk et al.’96)

If a centrally symmetric bounded polytope in Rg does not
contain an integer point, then it has width O(g log g).

Corollary

If H is a quadrangulation of an orientable surface of Euler
genus g and the edgewidth of H is at least Θ(g log g), then H is
3-colorable.



Conclusions

Summary

One part of D., Král’, Thomas’09 argument (dealing with
near-quadrangulations) can be simplified and better understood
via nowhere-zero flows.

Problem

What about the other part:
A practical algorithm to reduce the problem of 3-colorability
of a triangle-free graph H to a near-quadrangulation
H0 ⊆ H?
Tight bounds on q(H0)?

Theorem (D., Pekárek)

If H is drawn on the torus, then q(H0) ≤ 16.



Conclusions

Summary

The concept of homology is useful even if you have no idea
what it is.


