Flows, coloring, and homology

Zdeněk Dvořák

Charles University, Prague

Coloring and graphs on surfaces

Theorem (The Four Color Theorem)

Every planar graph is 4-colorable.
Theorem (Heawood's formula)
Every graph drawn on a surface of Euler genus g is

$$
\left\lfloor\frac{7+\sqrt{24 g+1}}{2}\right\rfloor \text {-colorable. }
$$

Theorem (Grötzsch theorem)

Every planar triangle-free graph is 3-colorable.

The key question

Problem
Can the Four Color Theorem and Grötzsch theorem be generalized to other surfaces?
Perhaps with a few exceptional graphs?

Answer

No.

Non-3-colorable triangle-free graphs

Mycielsky graphs of odd cycles

Non-bipartite quadrangulations of the projective plane

Non-4-colorable graphs

Triangulations with two adjacent vertices of odd degree.

Triangulations of non-3-colorable quadrangulations.

The key question, revisited

For a surface Σ, girth γ, number of colors k :

Problem (Structural characterization)

How do the minimal non-k-colorable graphs of girth at least γ drawn on Σ look like?

Problem (Algorithms)

Given a graph G of girth at least γ drawn on Σ, can we decide whether G is k-colorable in polynomial time?

Finitely many obstructions

For a surface Σ, girth γ, number of colors k :

Theorem (Thomassen'93, Gallai'63, Thomassen'03)

If $-k \geq 5$, or

- $\gamma \geq 4$ and $k=4$, or
- $\gamma \geq 5$ and $k=3$,
then there are only finitely many minimal non-k-colorable graphs of girth at least γ drawn on Σ.

Corollary
In all these situations, colorability can be tested by checking the presence of finitely many obstructions.

Coloring graphs on surfaces

Critical graphs/complexity of coloring:

colors girth	3	4	≥ 5
3	$\infty /$ NPC	∞ but structured/P	finite/P
4	$\infty /$ open	finitely many/P	
≥ 5	finitely many/P		

Minimal non-3-colorable triangle-free graphs

Definition

A graph G drawn on a surface is an s-near-quadrangulation if

$$
\sum_{f \in F(G),|f| \neq 4}|f| \leq s
$$

Theorem (D., Král', Thomas'09)

For every surface Σ, there exists $s=O(g(\Sigma))$ such that every minimal non-3-colorable triangle-free graph drawn on Σ without non-contractible 4-cycles is an s-near-quadrangulation.

Theorem (D., Král', Thomas'09)

For every surface Σ, there exists s and a linear-time algorithm that given a triangle-free graph G drawn on Σ without non-contractible 4-cycles either

- correctly decides that G is 3-colorable, or
- returns a subgraph $H \subseteq G$ such that
- every 3-coloring of H extends to a 3-coloring of G, and
- His an s-near-quadrangulation.

Coloring near-quadrangulations

Theorem (D., Král', Thomas'09)
For every surface Σ and every s, there exists a linear-time algorithm that given an s-near-quadrangulation H of Σ either

- finds a 3-coloring of H, or
- correctly decides that H is not 3-colorable.

Corollary (D., Král', Thomas'09)

For every surface Σ, there exists s and a linear-time algorithm that given a triangle-free graph G drawn on Σ correctly decides whether G is 3-colorable.

Problem

Does there exist a simple algorithm to 3-color near-quadrangulations?

Definition

A flow with boundary $d: V(G) \rightarrow \mathbb{Z}$ is a function ψ from directed edges of G to \mathbb{Z} such that
(1) $\psi(u, v)=-\psi(v, u)$ for every $u v \in E(G)$, and
(2) for every $u \in V(G)$,

$$
\sum_{u v \in E(G)} \psi(u, v)=d(u)
$$

$(\leq k)$-flow: $|\psi(u, v)| \leq k$, nowhere-zero: $\psi(u, v) \neq 0$.

Theorem (Tutte'54)

A plane graph H is 3-colorable if and only if its dual graph G has a nowhere-zero (≤ 1)-flow with boundary divisible by 3.

A 3-coloring algorithm

Definition

A function $d: V(G) \rightarrow \mathbb{Z}$ is a plausible boundary if

- $\sum_{v \in V(G)} d(v)=0$ and for each $v \in V(G)$,
- 3|d(v),
- $d(v) \equiv \operatorname{deg} v(\bmod 2)$, and
- $|d(v)| \leq \operatorname{deg} v$.

Algorithm (3-colorability of a plane graph H)
For every plausible boundary d for the dual G of H :

- If there exists a nowhere-zero (≤ 1)-flow in G with boundary d, return true.
Otherwise, return false.

Number of choices for d ?

Possible boundary values b at a vertex of degree k :

- 3|b,
- $b \equiv k(\bmod 2)$, and
- $|b| \leq k$.

k	3	4	5	6	7	8	9
choices	± 3	0	± 3	$0, \pm 6$	± 3	$0, \pm 6$	$\pm 3, \pm 9$
number of choices	2	1	2	3	2	3	4

Corollary

For an s-near-quadrangulation H, the number $q(H)$ of plausible boundaries for the dual of H is bounded by a function of s.

Applications

For plane s-near-quadrangulations:

- Precoloring extension from a connected subgraph (D., Lidický'15)
- Precoloring extension from a subgraph with two components (D., Pekárek'21).

For triangle-free graphs drawn on the torus:

- Practical linear-time algorithm for 3-colorability (D., Pekárek'21)
- Implemented by Urmanov'22.

Flow over cycles

For a cycle K in a graph H and flow ψ in its dual, let

$$
\psi / K=\sum_{e \in E(K)} \psi\left(e^{\star}\right)
$$

Generalized version of Tutte's duality

Lemma

The following claims are equivalent for a graph H drawn on an orientable surface:

- the graph H is 3-colorable
- there exists a nowhere-zero (≤ 1)-flow ψ in the dual G of H such that

$$
3 \mid \psi / K
$$

for every cycle K in H.

Observation

The condition holds for contractible cycles iff the boundary of ψ is divisible by 3.

Integral cycles

Definition

A 1-cycle in H is a flow with zero boundary. For a flow ψ in the dual G of H,

$$
\psi / K=\sum_{e \in E(H)} K(e) \cdot \psi\left(e^{\star}\right)
$$

Linearity

Observation
If K_{1} and K_{2} are 1 -cycles and n is an integer, then

- $K_{1}+K_{2}$ is a 1-cycle and

$$
\psi /\left(K_{1}+K_{2}\right)=\psi / K_{1}+\psi / K_{2}
$$

- $n K_{1}$ is a 1-cycle and

$$
\psi /\left(n K_{1}\right)=n \cdot \psi / K_{1} .
$$

The space of cycles

Definition

For a graph H drawn on an orientable surface, let

- $\mathcal{C}(H)$ be the set of all 1-cycles, and
- $\mathcal{B}(H) \subseteq \mathcal{C}(H)$ the set of linear combinations (with integer coefficients) of face boundaries of H, called 1-boundaries.

Observation

A cycle K in H belongs to $\mathcal{B}(H)$ iff K separates the surface. In particular, all contractible cycles belong to $\mathcal{B}(H)$.

Generators

For a graph H on an orientable surface of Euler genus g :

Lemma

There exist non-contractible cycles K_{1}, \ldots, K_{g} in H (generators of the homology group of H) such that

$$
\mathcal{C}(H)=\left\{B+\sum_{i=1}^{g} n_{i} K_{i}: n_{1}, \ldots, n_{g} \in \mathbb{Z}, B \in \mathcal{B}(H)\right\} .
$$

General surfaces, fewer cycles

Lemma

The following claims are equivalent for a graph H drawn on an orientable surface and generators K_{1}, \ldots, K_{g} of its homology group:

- the graph H is 3-colorable
- there exists a nowhere-zero (≤ 1)-flow ψ with boundary divisible by 3 in the dual G of H such that

$$
3 \mid \psi / K_{i}
$$

$$
\text { for } i=1, \ldots, g
$$

Algorithm for general surfaces

A function $r:[g] \rightarrow \mathbb{Z}$ is plausible if for each $i, 3\left|r(i),\left|K_{i}\right| \equiv r(i)\right.$ $(\bmod 2)$, and $|r(i)| \leq\left|K_{i}\right|$.

Algorithm (3-colorability of a graph H on orientable surface)

- Find generators K_{1}, \ldots, K_{g} of the homology group of H.
- For
- every plausible boundary d for the dual G of H and
- every plausible $r:[g] \rightarrow \mathbb{Z}$ check:
- If there exists a nowhere-zero (≤ 1)-flow ψ in G with boundary d such that $\psi / K_{i}=r(i)$ for $i=1, \ldots, g$, return true.
Otherwise, return false.
- $O\left(q(H) \cdot n^{g}\right)$ choices.
- How to test the existence of the flow?
- Idea from Chambers, Erickson, Nayyeri'10, Venkatesan'83.

Problem

Given

- a plausible boundary d in the dual G of H and
- a plausible function $r:[g] \rightarrow \mathbb{Z}$, decide efficiently whether there exists a nowhere-zero (≤ 1)-flow ψ in G with boundary d such that $\psi / K_{i}=r(i)$ for $i=1, \ldots, g$.
- A flow ψ_{0} with these properties always exists (sum of paths and dual generators).
- $\psi-\psi_{0}$ has zero boundary (it is a 1-cycle) and $\psi / K_{i}=0$ for $i=1, \ldots, g$.
- Equivalently, $\psi-\psi_{0} \in \mathcal{B}(G)$!

Problem

Given a graph G on a surface and a flow ψ_{0} in G, decide efficiently whether there exists a 1-boundary $R \in \mathcal{B}(G)$ such that $\psi_{0}+R$ is a nowhere-zero (≤ 1)-flow.

$$
R=\sum_{f \in F(G)} a_{f} \partial f
$$

$$
\begin{aligned}
-1 & \leq \psi_{0}(e)+a_{f_{1}}-a_{f_{2}} \leq 1 \\
a_{f_{1}} & \leq a_{f_{2}}+\left(1-\psi_{0}(e)\right) \\
a_{f_{2}} & \leq a_{f_{1}}+\left(\psi_{0}(e)+1\right)
\end{aligned}
$$

Solution: $a_{f}=d_{\ell}\left(f_{0}, f\right)$.

Is it nowhere-zero?

Suppose $\left(\psi_{0}+R\right)(e)=0$:

$$
\psi_{0} / \boldsymbol{C}=\left(\psi_{0}+R\right) / C \not \equiv|C| \quad(\bmod 2)
$$

- Implies that $\psi_{0}+R$ is not a nowhere-zero (≤ 1)-flow for any $R \in \mathcal{B}(G)$.
- Will not happen because of the parity conditions in plausibility.

Summary

The following are equivalent for plausible d and r :

- There exists a nowhere-zero (≤ 1)-flow ψ with boundary d such that $\psi / K_{i}=r(i)$ for each i.
- The corresponding auxiliary graph does not contain a negative length cycle.
- For every cycle $C=B+\sum_{i} n_{i} K_{i}$ with $B \in \mathcal{B}(H)$,

$$
\langle B, d\rangle+\sum_{i} n_{i} r(i) \leq|C| .
$$

Polytope of realizable flows

For a plausible boundary d in G, let

$$
\begin{gathered}
u_{d}\left(n_{1}, \ldots, n_{g}\right)=\min _{B \in \mathcal{B}(H)}\left|B+\sum_{i} n_{i} K_{i}\right|-\langle B, d\rangle \\
\mathcal{P}_{d}=\left\{x \in \mathbb{R}^{g}: \sum_{i=1}^{g} n(i) \cdot x(i) \leq u_{d}(n) \text { for every } n \in \mathbb{Z}^{g}\right\} .
\end{gathered}
$$

Observation

The following claims are equivalent:
(1) There exists a nowhere-zero (≤ 1)-flow ψ with boundary d such that $3 \mid \psi / K_{i}$ for each i.
(2) \mathcal{P}_{d} contains a point x with integer coordinates such that

$$
x(i) \equiv 3\left(\left|K_{i}\right| \bmod 2\right) \quad(\bmod 6) \text { for } i=1, \ldots, g
$$

(3) $\left(\mathcal{P}_{d}-3\left(\left|K_{\star}\right| \bmod 2\right)\right) / 6$ contains a point with integer coordinates.

An improved algorithm

To decide whether a graph H on an orientable surface of Euler genus g is 3 -colorable:

Algorithm (Bang, D., Heath, Lidický'22)

For every plausible boundary d for the dual G of H,

- if $\left(\mathcal{P}_{d}-3\left(\left|K_{\star}\right| \bmod 2\right)\right) / 6$ contains a point with integer coordinates, return true.
Otherwise, return false.
Time complexity:
- $q(H) \cdot O\left(|H|^{2}\right.$ polylog $\left.|H|\right)$
- Worse than $O(|H|)$ algorithm of D., Král', Thomas.
- But easy to implement.

Variations

- Include choice of d in the polytope.
- Removes the dependency on the lengths of the faces, but increases the dimension.
- Non-orientable surfaces (D., Moore, Sereni).
- Homomorphism to $C_{2 k+1}$ instead of 3-coloring.
- More generally, circular ($a: b$)-coloring for a odd.
- a even fails (0 cannot have different parity from all allowed flow values).
- Any number of precolored vertices.

Edgewidth of non-3-colorable quadrangulations

Edgewidth: The length of the shortest non-contractible cycle.

Theorem (Hutchinson'94)
If H is a quadrangulation of an orientable surface of Euler genus g and the edgewidth of H is at least $\exp (\Theta(g))$, then H is 3-colorable.

Theorem (D., Král', Thomas'09)
Edgewidth $\Theta\left(g^{3}\right)$ suffices, even for triangle-free graphs.

Polytope width

Definition

The width of a polytope $\mathcal{P} \subset \mathbb{R}^{g}$ is the infimum of

$$
\max _{x \in \mathcal{P}}\langle c, x\rangle-\min _{x \in \mathcal{P}}\langle c, x\rangle
$$

over $c \in \mathbb{Z}^{g} \backslash\{(0, \ldots, 0)\}$.

Polytopes without integer points

Theorem (Kannan, Lovász'88, Rudelson'00)
If a bounded polytope in \mathbb{R}^{g} does not contain an integer point, then it has width $O\left(g^{4 / 3}\right)$.

Conjecture (Banaszczyk et al.'99)

If a bounded polytope in \mathbb{R}^{g} does not contain an integer point, then it has width $O(g \log g)$.

Width of the polytope of realizable circulations

Lemma (Bang, D., Heath, Lidický22)
If H is an s-near-quadrangulation and the dual G of H has a (≤ 1)-flow with boundary d, then the width of \mathcal{P}_{d} is $\Omega(e w(H))-O(s)$.

Recall:
Theorem (D., Král', Thomas'09)
For every surface Σ, there exists $s=O(g(\Sigma))$ such that every minimal non-3-colorable triangle-free graph drawn on Σ without non-contractible 4-cycles is an s-near-quadrangulation.

Corollary

If H is a triangle-free graph drawn on an orientable surface of Euler genus g and the edgewidth of H is at least $\Theta\left(g^{4 / 3}\right)$, then H is 3-colorable.

Quadrangulations

Observation
If H is a quadrangulation, then \mathcal{P} is centrally symmetric.

Theorem (Banaszczyk et al.'96)
If a centrally symmetric bounded polytope in \mathbb{R}^{g} does not contain an integer point, then it has width $O(g \log g)$.

Corollary

If H is a quadrangulation of an orientable surface of Euler genus g and the edgewidth of H is at least $\Theta(g \log g)$, then H is 3-colorable.

Conclusions

Summary

One part of D., Král', Thomas'09 argument (dealing with near-quadrangulations) can be simplified and better understood via nowhere-zero flows.

Problem

What about the other part:

- A practical algorithm to reduce the problem of 3-colorability of a triangle-free graph H to a near-quadrangulation $H_{0} \subseteq H$?
- Tight bounds on $q\left(H_{0}\right)$?

Theorem (D., Pekárek)

If H is drawn on the torus, then $q\left(H_{0}\right) \leq 16$.

Conclusions

Summary

The concept of homology is useful even if you have no idea what it is.

