Flows, coloring, and homology

Zdeněk Dvořák

Charles University, Prague

Theorem (The Four Color Theorem)

Every planar graph is 4-colorable.

Theorem (Heawood's formula)

Every graph drawn on a surface of Euler genus g is

$$\left\lfloor \frac{7 + \sqrt{24g + 1}}{2} \right\rfloor$$
-colorable.

Theorem (Grötzsch theorem)

Every planar triangle-free graph is 3-colorable.

Problem

Can the Four Color Theorem and Grötzsch theorem be generalized to other surfaces?

Perhaps with a few exceptional graphs?

Answer

No.

Non-3-colorable triangle-free graphs

Mycielsky graphs of odd cycles

Non-bipartite quadrangulations of the projective plane

Non-4-colorable graphs

Triangulations with two adjacent vertices of odd degree.

Triangulations of non-3-colorable quadrangulations.

For a surface Σ , girth γ , number of colors *k*:

Problem (Structural characterization)

How do the minimal non-k-colorable graphs of girth at least γ drawn on Σ look like?

Problem (Algorithms)

Given a graph G of girth at least γ drawn on Σ , can we decide whether G is k-colorable in polynomial time?

Finitely many obstructions

For a surface Σ , girth γ , number of colors k:

Theorem (Thomassen'93, Gallai'63, Thomassen'03)

- If $k \ge 5$, or
 - $\gamma \geq$ 4 and k = 4, or
 - γ ≥ 5 and k = 3,

then there are only finitely many minimal non-k-colorable graphs of girth at least γ drawn on Σ .

Corollary

In all these situations, colorability can be tested by checking the presence of finitely many obstructions.

Critical graphs/complexity of coloring:

girth colors	3	4	≥ 5			
3	∞ /NPC	∞ but structured/P	finite/P			
4	∞/open finitely many/P					
≥ 5	finitely many/P					

Minimal non-3-colorable triangle-free graphs

Definition

A graph G drawn on a surface is an *s*-near-quadrangulation if

$$\sum_{f\in F(G), |f|\neq 4} |f| \leq s$$

Theorem (D., Král', Thomas'09)

For every surface Σ , there exists $\mathbf{s} = O(g(\Sigma))$ such that every minimal non-3-colorable triangle-free graph drawn on Σ without non-contractible 4-cycles is an s-near-quadrangulation.

Theorem (D., Král', Thomas'09)

For every surface Σ , there exists s and a linear-time algorithm that given a triangle-free graph G drawn on Σ without non-contractible 4-cycles either

- correctly decides that G is 3-colorable, or
- returns a subgraph $H \subseteq G$ such that
 - every 3-coloring of H extends to a 3-coloring of G, and
 - H is an s-near-quadrangulation.

Theorem (D., Král', Thomas'09)

For every surface Σ and every s, there exists a linear-time algorithm that given an s-near-quadrangulation H of Σ either

- finds a 3-coloring of H, or
- correctly decides that H is not 3-colorable.

Corollary (D., Král', Thomas'09)

For every surface Σ , there exists s and a linear-time algorithm that given a triangle-free graph G drawn on Σ correctly decides whether G is 3-colorable.

Problem

Does there exist a simple algorithm to 3-color near-quadrangulations?

Flows

Definition

A flow with boundary $d: V(G) \to \mathbb{Z}$ is a function ψ from directed edges of G to \mathbb{Z} such that

•
$$\psi(u, v) = -\psi(v, u)$$
 for every $uv \in E(G)$, and
• for every $u \in V(G)$,
• $\psi(u, v) = d(u)$

$$\sum_{uv\in E(G)}\psi(u,v)=d(u).$$

 $(\leq k)$ -flow: $|\psi(u, v)| \leq k$, nowhere-zero: $\psi(u, v) \neq 0$.

Theorem (Tutte'54)

A plane graph H is 3-colorable if and only if its dual graph G has a nowhere-zero (≤ 1)-flow with boundary divisible by 3.

A 3-coloring algorithm

Definition

A function $d: V(G) \rightarrow \mathbb{Z}$ is a plausible boundary if

•
$$\sum_{v \in V(G)} d(v) = 0$$
 and for each $v \in V(G)$,

• 3|*d*(*v*),

•
$$d(v) \equiv \deg v \pmod{2}$$
, and

•
$$|d(v)| \leq \deg v$$
.

Algorithm (3-colorability of a plane graph H)

For every plausible boundary d for the dual G of H:

 If there exists a nowhere-zero (≤1)-flow in G with boundary d, return true.

Otherwise, return false.

Possible boundary values *b* at a vertex of degree *k*:

- 3|*b*,
- $b \equiv k \pmod{2}$, and
- $|b| \leq k$.

k	3	4	5	6	7	8	9
choices	±3	0	±3	0,±6	±3	0,±6	\pm 3, \pm 9
number of choices	2	1	2	3	2	3	4

Corollary

For an s-near-quadrangulation H, the number q(H) of plausible boundaries for the dual of H is bounded by a function of s.

For plane *s*-near-quadrangulations:

- Precoloring extension from a connected subgraph (D., Lidický'15)
- Precoloring extension from a subgraph with two components (D., Pekárek'21).

For triangle-free graphs drawn on the torus:

- Practical linear-time algorithm for 3-colorability (D., Pekárek'21)
- Implemented by Urmanov'22.

Flow over cycles

For a cycle *K* in a graph *H* and flow ψ in its dual, let

$$\psi/{\it K} = \sum_{{\it e}\in {\it E}({\it K})} \psi({\it e}^{\star})$$

Lemma

The following claims are equivalent for a graph H drawn on an orientable surface:

- the graph H is 3-colorable
- there exists a nowhere-zero (≤1)-flow ψ in the dual G of H such that

 $3|\psi/K$

for every cycle K in H.

Observation

The condition holds for contractible cycles iff the boundary of ψ is divisible by 3.

Definition

A 1-cycle in *H* is a flow with zero boundary. For a flow ψ in the dual *G* of *H*,

$$\psi/\mathcal{K} = \sum_{\boldsymbol{e}\in E(\mathcal{H})} \mathcal{K}(\boldsymbol{e}) \cdot \psi(\boldsymbol{e}^{\star}).$$

Observation

If K_1 and K_2 are 1-cycles and n is an integer, then

•
$$K_1 + K_2$$
 is a 1-cycle and

$$\psi/(K_1+K_2)=\psi/K_1+\psi/K_2.$$

• nK₁ is a 1-cycle and

$$\psi/(nK_1) = n \cdot \psi/K_1.$$

The space of cycles

Definition

For a graph *H* drawn on an orientable surface, let

- C(H) be the set of all 1-cycles, and
- B(H) ⊆ C(H) the set of linear combinations (with integer coefficients) of face boundaries of H, called 1-boundaries.

Observation

A cycle K in H belongs to $\mathcal{B}(H)$ iff K separates the surface. In particular, all contractible cycles belong to $\mathcal{B}(H)$.

Generators

For a graph H on an orientable surface of Euler genus g:

Lemma

There exist non-contractible cycles K_1, \ldots, K_g in H (generators of the homology group of H) such that

$$\mathcal{C}(H) = \left\{ B + \sum_{i=1}^{g} n_i K_i : n_1, \dots, n_g \in \mathbb{Z}, B \in \mathcal{B}(H) \right\}$$

Lemma

The following claims are equivalent for a graph H drawn on an orientable surface and generators K_1, \ldots, K_g of its homology group:

- the graph H is 3-colorable
- there exists a nowhere-zero (≤1)-flow ψ with boundary divisible by 3 in the dual G of H such that

$$3|\psi/K_i$$

for i = 1, ..., g.

Algorithm for general surfaces

A function $r : [g] \to \mathbb{Z}$ is plausible if for each *i*, $3|r(i), |K_i| \equiv r(i)$ (mod 2), and $|r(i)| \leq |K_i|$.

Algorithm (3-colorability of a graph H on orientable surface)

• Find generators K_1, \ldots, K_g of the homology group of H.

For

- every plausible boundary d for the dual G of H and
- every plausible $r:[g] \to \mathbb{Z}$

check:

 If there exists a nowhere-zero (≤1)-flow ψ in G with boundary d such that ψ/K_i = r(i) for i = 1,...,g, return true.

Otherwise, return false.

- $O(q(H) \cdot n^g)$ choices.
- How to test the existence of the flow?
 - Idea from Chambers, Erickson, Nayyeri'10, Venkatesan'83.

Problem

Given

- a plausible boundary d in the dual G of H and
- a plausible function $r: [g] \to \mathbb{Z}$,

decide efficiently whether there exists a nowhere-zero (≤ 1) -flow ψ in G with boundary d such that $\psi/K_i = r(i)$ for i = 1, ..., g.

- A flow ψ_0 with these properties always exists (sum of paths and dual generators).
- $\psi \psi_0$ has zero boundary (it is a 1-cycle) and $\psi/K_i = 0$ for i = 1, ..., g.
- Equivalently, $\psi \psi_0 \in \mathcal{B}(G)$!

Finding the flow, simplified

Problem

Given a graph G on a surface and a flow ψ_0 in G, decide efficiently whether there exists a 1-boundary $R \in \mathcal{B}(G)$ such that $\psi_0 + R$ is a nowhere-zero (≤ 1)-flow.

$$R = \sum_{f \in F(G)} a_f \partial f$$

$$egin{aligned} -1 &\leq \psi_0(e) + a_{f_1} - a_{f_2} \leq 1 \ a_{f_1} &\leq a_{f_2} + (1 - \psi_0(e)) \ a_{f_2} &\leq a_{f_1} + (\psi_0(e) + 1) \end{aligned}$$

Solution: $a_f = d_\ell(f_0, f)$.

Is it nowhere-zero?

Suppose $(\psi_0 + R)(e) = 0$:

$$\psi_0/C = (\psi_0 + R)/C \not\equiv |C| \pmod{2}$$

- Implies that $\psi_0 + R$ is not a nowhere-zero (≤ 1)-flow for any $R \in \mathcal{B}(G)$.
- Will not happen because of the parity conditions in plausibility.

The following are equivalent for plausible *d* and *r*:

- There exists a nowhere-zero (≤1)-flow ψ with boundary d such that ψ/K_i = r(i) for each i.
- The corresponding auxiliary graph does not contain a negative length cycle.
- For every cycle $C = B + \sum_{i} n_i K_i$ with $B \in \mathcal{B}(H)$,

$$\langle B, d \rangle + \sum_{i} n_{i} r(i) \leq |C|.$$

Polytope of realizable flows

For a plausible boundary d in G, let

$$u_d(n_1,\ldots,n_g) = \min_{B\in\mathcal{B}(H)} \left| B + \sum_i n_i K_i \right| - \langle B, d \rangle.$$

$$\mathcal{P}_d = \left\{ x \in \mathbb{R}^g : \sum_{i=1}^g n(i) \cdot x(i) \le u_d(n) \text{ for every } n \in \mathbb{Z}^g
ight\}$$

٠

Observation

The following claims are equivalent:

- There exists a nowhere-zero (≤ 1)-flow ψ with boundary d such that $3|\psi/K_i$ for each *i*.
- 2 \mathcal{P}_d contains a point x with integer coordinates such that

 $x(i) \equiv 3(|K_i| \mod 2) \pmod{6}$ for i = 1, ..., g.

To decide whether a graph H on an orientable surface of Euler genus g is 3-colorable:

Algorithm (Bang, D., Heath, Lidický'22)

For every plausible boundary d for the dual G of H,

if (P_d − 3(|K_{*}| mod 2))/6 contains a point with integer coordinates, return true.

Otherwise, return false.

Time complexity:

- $q(H) \cdot O(|H|^2 \text{polylog}|H|)$
- Worse than O(|H|) algorithm of D., Král', Thomas.
- But easy to implement.

- Include choice of *d* in the polytope.
 - Removes the dependency on the lengths of the faces, but increases the dimension.
- Non-orientable surfaces (D., Moore, Sereni).
- Homomorphism to C_{2k+1} instead of 3-coloring.
- More generally, circular (a : b)-coloring for a odd.
 - *a* even fails (0 cannot have different parity from all allowed flow values).
- Any number of precolored vertices.

Edgewidth: The length of the shortest non-contractible cycle.

Theorem (Hutchinson'94)

If H is a quadrangulation of an orientable surface of Euler genus g and the edgewidth of H is at least $exp(\Theta(g))$, then H is 3-colorable.

Theorem (D., Král', Thomas'09)

Edgewidth $\Theta(g^3)$ suffices, even for triangle-free graphs.

Polytope width

Definition

The width of a polytope $\mathcal{P} \subset \mathbb{R}^g$ is the infimum of

$$\max_{\mathbf{x}\in\mathcal{P}} \langle \boldsymbol{c}, \boldsymbol{x}
angle - \min_{\boldsymbol{x}\in\mathcal{P}} \langle \boldsymbol{c}, \boldsymbol{x}
angle$$

over $c \in \mathbb{Z}^g \setminus \{(0, \ldots, 0)\}.$

Theorem (Kannan, Lovász'88, Rudelson'00)

If a bounded polytope in \mathbb{R}^g does not contain an integer point, then it has width $O(g^{4/3})$.

Conjecture (Banaszczyk et al.'99)

If a bounded polytope in \mathbb{R}^g does not contain an integer point, then it has width $O(g \log g)$.

Width of the polytope of realizable circulations

Lemma (Bang, D., Heath, Lidický'22)

If *H* is an s-near-quadrangulation and the dual *G* of *H* has a (≤ 1) -flow with boundary *d*, then the width of \mathcal{P}_d is $\Omega(ew(H)) - O(s)$.

Recall:

Theorem (D., Král', Thomas'09)

For every surface Σ , there exists $s = O(g(\Sigma))$ such that every minimal non-3-colorable triangle-free graph drawn on Σ without non-contractible 4-cycles is an s-near-quadrangulation.

Corollary

If H is a triangle-free graph drawn on an orientable surface of Euler genus g and the edgewidth of H is at least $\Theta(g^{4/3})$, then H is 3-colorable.

Observation

If H is a quadrangulation, then \mathcal{P} is centrally symmetric.

Theorem (Banaszczyk et al.'96)

If a centrally symmetric bounded polytope in \mathbb{R}^g does not contain an integer point, then it has width $O(g \log g)$.

Corollary

If H is a quadrangulation of an orientable surface of Euler genus g and the edgewidth of H is at least $\Theta(g \log g)$, then H is 3-colorable.

Summary

One part of D., Král', Thomas'09 argument (dealing with near-quadrangulations) can be simplified and better understood via nowhere-zero flows.

Problem

What about the other part:

- A practical algorithm to reduce the problem of 3-colorability of a triangle-free graph H to a near-quadrangulation H₀ ⊆ H?
- Tight bounds on $q(H_0)$?

Theorem (D., Pekárek)

If H is drawn on the torus, then $q(H_0) \leq 16$.

Summary

The concept of homology is useful even if you have no idea what it is.