EVERY ONE A WINNER: AN INTRODUCTION TO ORDERLY ALGORITHMS

Gordon Royle

Centre for the Mathematics of Symmetry & Computation School of Mathematics & Statistics The University of Western Australia

June 2023

KRANJSKA GORA TO PERTH

PERTH CITY

(KANE ARTIE PHOTOGRAPH)

In February 1988, I walked into the forbidding UWaterloo Math and Computer Building^{\dagger} to start a short postdoc with Ron Read.

He was a true polymath, not only a brilliant mathematician and witty author, but a talented musician and composer, a lover of puzzles and an enthusiastic early adopter of computational tools in graph theory.

[†]Architect's motto: we put the *"brutal"* into *"brutalist architecture"*

LISTS, CATALOGUES AND CENSUSES

For hundreds—even thousands—of years, mathematicians and others have created *databases* of interesting mathematical objects.

- Numbers (prime)
- Squares (Latin, magic)
- Knots
- Matroids
- Groups (permutation, abstract)
- and of course ... graphs

All science is either physics or stamp-collecting - Ernest Rutherford

MARY G. HASEMAN : AMPHICHEIRAL KNOTS OF TWELVE CROSSINGS

GRAPHS

Graph-collecting seems to have started with Isadore Kagno (1946).[†]

3. Graphs of Degree 6. There are eighteen admissible graphs,

 $H_1 = N_e$, the complete 6-point. $H_2 = [ab.ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df]$ $H_3 = [ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de]$ $H_4 := [ac. ad, ae, af, bc, bd, be, bf, ce, cf, de, df, ef]$ $H_5 = [ac, ad, ae, af, bc, bd, be, bf, ce, cf, de, df]$ $H_a = [ac, ad, ae, af, bc, bd, be, bf, cd, cf, df, ef]$ $H_{\tau} = [ab, ac, ae, af, bd, be, bf, ce, cf, de, df, ef]$ Ha = [ab, ad, ae, af, bc, be, bf, ce, cf, de, df] $H_{a} = [ab, ac, ae, af, bd, be, bf, cd, cf, df, ef]$ $H_{10} = [ad, ae, af, bd, be, bf, cd, ce, cf, df, ef]$ $H_{11} \models [ab, ac, ad, ae, bc, bd, bf, cd, ce, df, ef]$ H12 = [ad, ae, af, bc, be, bf, ce, cf, de, df, ef] $H_{13} = [ad, ae, af, bc, be, bf, ce, cf, de, df]$ $H_{14} = [ad, ae, af, bc, be, bf, cd, ce, df, ef]$ H15 = [ab, ae, af, bc, bf, cd, cf, de, df, ef] H10 == [ad, ae, af, bd, be, bf, cd, ce, cf, de] H17 == [ac, ad, ae, bd, be, bf, ce, cf, df] $H_{18} := [ad, ae, af, bd, be, bf, cd, ce, cf]$

Amer. J. Math 1946

Number of vertices	Number of graphs	Author	Date	Reference
<i>p</i> = 6	156	I. Kagno	1946	[7]
$p = \overline{7}$	1.044	D.W. Crowe, F. Harary	1952	Unpublished*
P .		B. R. Heap	1952	Unpublished
n = 8	12.346	B. R. Heap	1969	[5]
p = 9	274,668	H. H. Baker,	1974	[1]
p = 10	12,005,168	A. K. Dewdney, A. L. Szilard R. D. Cameron, C. J. Colbourn, R. C. Read, N. C. Wormald	1978–1981	This paper

Cameron, Colbourn, Read, Wormald

J. Graph Theory 1985

[†]Unfortunately he missed a graph in this list.

A *cubic graph* is one where each vertex has exactly three neighbours. Many deep problems in graph theory can be reduced to cubic graphs.

etc.

5. En appliquant ces transformations aux cfs $(9_2, 6_3)$ et $(6_1, 4_2)$ on arrive à cang $(12_2, 8_3)$ différentes, représentées par les tableaux suivants :

A 14 24 35 14 15 26 17 48 15 25 36 24 25 36 37 68 17 26 37 48 35 68 78 78	
B 15 25 36 24 25 36 67 48 17 26 38 48 35 67 78 78	
C 12 12 13 14 56 56 37 48 13 23 23 24 57 67 57 58 14 24 37 48 58 68 67 68	(12, 8,)
D 14 24 35 14 15 26 17 28 15 26 36 24 35 36 37 58 17 28 37 46 58 46 78 78	
E 13 24 13 14 15 26 27 38 14 26 35 24 35 46 57 68 15 27 38 46 57 68 78 78	

de Vries, 1891

Brinkmann, Goedgebeur, Van Cleemput, *The history of the generation of cubic graphs*, International Journal of Chemical Modeling, 2013.

Many reasons to construct databases of small combinatorial objects.

- *Direct search* for examples and counterexamples
- Gaining *insight* by studying small-case behaviour
- Dealing with *low-level junk* in exact structural results
 ... two infinite families and five exceptional examples ...
- To be *integrated* into computer algebra systems
 - g := SmallGroup(512,1000000);

You can also collect butterflies and make many observations. If you like butterflies, that's fine; but such work must not be confounded with research, which is concerned to discover explanatory principles (Chomsky). Straightforward attempts to construct databases of graphs will usually construct *many isomorphic copies* of each graph.

Isomorphic graphs are structurally identical so this just represents *unnecessary duplication*.

So a database should contain *exactly one graph* from each isomorphism class.

RUNNING EXAMPLE

Construct the graphs on 4 vertices.

The decision problem

GRAPH ISOMORPHISM Instance: Graphs *G* and *H* Question: Is *G* isomorphic to *H*?

is in the complexity class NP because if you are given the bijection it is easy to confirm that it is an isomorphism.

GRAPH ISOMORPHISM is *not known* to be in P and *not known* to be NP-complete — it is a promising candidate for the elusive "intermediate" computational problem that would show that $P \neq NP$.

In practice, most graph isomorphism programs do not directly test pairs of graphs, but instead *canonically label* individual graphs.

A canonical labelling function is a function

 $c:\mathcal{G}\to\mathcal{G}$

such that for all graphs G, H we have $c(G) \cong G$ and

 $G \cong H \iff c(G) = c(H).$

A canonical labelling algorithm distinguishes *one member* of each isomorphism class as the *canonical representative* of that class.

Represent each graph in an isomorphism class as a binary string of length $\binom{n}{2}$ indicating which edges are present, and take the graph with the *lexicographically largest* string as the canonical representative.

This canonical labelling is *easy* to understand, but *hard* to compute.

THE NEEDLES IN THE HAYSTACK

Initialise \mathcal{L}_0 be the list of all graphs on 4 vertices with no edges, and then for each $k \ge 0$, create \mathcal{L}_{k+1} from \mathcal{L}_k .

For each graph $G \in \mathcal{L}_k$:

- Add a new edge to *G* in *all possible ways*,
- *Canonically label* each of the (k + 1)-edge graphs that arise,
- Add each canonically-labelled graph to \mathcal{L}_{k+1} if and only if it is *not already there*.

Then \mathcal{L}_{k+1} contains—exactly once each—every canonically-labelled graph on k + 1 edges.

Two factors limit the size of database that can reasonably be generated by the naive algorithm.

- Time spent *canonically labelling* graphs
- ► Time/space spent *comparing* canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at least $\binom{N}{2}$ equality tests.

If *N* is in the *billions* then this approach can never work.

Ron Read (and independently I. A. Faradžev) came up with the idea of an algorithm that *never performs pairwise comparisons*.

They devised a way to structure a construction algorithm so that every output is non-isomorphic to every other output—memorably encapsulated by the phrase *every one a winner*.[†]

The fundamental idea is to perform the search *entirely within* the subset of graphs that are canonically-labelled.

[†]Ron liked interesting paper titles such as "Is the null graph a pointless concept" discussing the pros and cons of allowing a graph to have no vertices.

There are a number of programs available that can canonically label large graphs, including nauty, Traces, bliss.

As a canonical labelling program can test graph isomorphism, it is *as hard* or *harder* than graph isomorphism.

Performance is very graph-dependent, but I have used Traces to canonically label a vertex-transitive 10-regular graph on 76 million vertices.

Initialise \mathcal{L}_0 be the list of all graphs on 4 vertices with no edges, and then for each $k \ge 0$, create \mathcal{L}_{k+1} from \mathcal{L}_k .

For each graph $G \in \mathcal{L}_k$:

- ► Add a new edge to *G* in all possible ways,
- Canonically label each of the (k + 1)-edge graphs that arise,
- Add each canonically-labelled graph to \mathcal{L}_{k+1} if and only if it is *not already there*.

Then \mathcal{L}_{k+1} contains—exactly once each—every canonically-labelled graph on k + 1 edges.

NAIVE ALGORITHM $\mathcal{L}_2 \rightarrow \mathcal{L}_3$

NAIVE ALGORITHM $\mathcal{L}_2 \rightarrow \mathcal{L}_3$

Two factors limit the size of database that can reasonably be generated by the naive algorithm.

- Time spent *canonically labelling* graphs
- ► Time/space spent *comparing* canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at least $\binom{N}{2}$ equality tests.

If *N* is in the *billions* then this approach can never work.

Ron Read (and independently I. A. Faradžev) came up with the idea of an algorithm that *never performs pairwise comparisons*.

They devised a way to structure the construction algorithm so that every output is non-isomorphic to every other output—memorably encapsulated by the phrase *every one a winner*.

The fundamental idea is to perform the search *entirely within* the subset of graphs that are canonically-labelled.

READ-FARADŽEV STYLE ORDERLY

For each graph $G \in \mathcal{L}_k$:

- ► (Augment) Add a new *last edge e* to *G* in all possible ways.
- (Test) Accept G + e into \mathcal{L}_{k+1} if it is *already canonically labelled*, and otherwise reject it.

Test for inclusion into \mathcal{L}_{k+1} becomes a *single-graph test* of canonicity.

It works because the recipe "*delete the last edge*" defines a tree on the set of canonically-labelled graphs.

The algorithm *explores / constructs* the tree "upwards" starting from the empty graph.

The search tree can be traversed in a depth-first (backtrack) fashion, dramatically reducing the total *time* and *space* required.

The search tree can be partitioned into *arbitrarily many* subtrees.

- Each part is totally independent of the others
- Each part can run on a *different* thread / core / chip or computer
- Graphs produced can be counted / examined and then *discarded*

This works because the max-lex canonical labelling is *hierarchical*, so the recipe "*remove the last edge*" produces a smaller canonically-labelled graph.

 $\texttt{110100} \rightarrow \texttt{110000}$

In particular, every canonically labelled graph can be obtained by *augmenting* a smaller canonically labelled graph.

Unfortunately the canonical labellings found by fast algorithms such as nauty and Traces *do not* have this hierarchical property.

THE PROBLEM

He focusses on *isomorphism classes* not *individual graphs*.

The recipe "*delete a special edge*" defines a tree on the set of isomorphism classes.

CANONICAL SEARCH TREE

The algorithm repeatedly *augments* a graph *G* (by adding an edge *e*) and then *accepts* or *rejects* the augmented graph G + e.

KEY IDEA Accept G + e if and only if e is a special edge of G + e.

So a graph will only be accepted if the augmentation was consistent with the canonical search tree — if it was a *canonical augmentation*.

If G and H are non-isomorphic and G + e and H + f are both accepted, then G + e is not isomorphic to H + f.

When G is augmented we need to consider augmenting by *every* non-edge.

If *e* and *f* are *equivalent* non-edges under the *automorphism group* of *G*, then G + e and G + f will definitely be isomorphic.

As canonical labelling algorithms such as nauty/Traces compute the automorphism group of a graph, the augmentation step can easily be modified to avoid this. Brendan McKay calls this the *canonical construction path* algorithm (and prefers to reserve the word "orderly" for Read-style orderly).

To reiterate:

- The augmentation step produces pairwise non-isomorphic graphs Graphs obtained by augmenting G are pairwise non-isomorphic.
- The *canonicity check* tests that the newly added edge is (equivalent to) the special edge

Graphs obtained by augmenting G are not isomorphic to those obtained by augmenting H.

Applies to *far more* than just graphs—if you have any set of combinatorial objects and you can find:

- A isomorph-invariant *canonical reduction* from a larger object to a smaller one.
- A reverse method of *augmenting* a smaller object to a set of pairwise non-isomorphic larger ones.

then you can run the canonical construction path algorithm.

For example, Brendan's graph generation program geng uses *vertex* addition/deletion.

```
00013890@DEP52010 nauty27r1 % geng -u 10
>A geng -d0D9 n=10 e=0-45
>Z 12005168 graphs generated in 3.36 sec
```

THE FIRST EXAMPLE

For example, my thesis[†] used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs *ear-by-ear*.

[†]heavily influenced by Brendan, of course

For example, my thesis[†] used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs *ear-by-ear*.

[†]heavily influenced by Brendan, of course

THE FIRST EXAMPLE

For example, my thesis[†] used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs *ear-by-ear*.

According to Brinkmann, Goedgebeur and Van Cleemput

This method already contains all ingredients that make later algorithms using the canonical construction path method so efficient.

[†]heavily influenced by Brendan, of course

Many combinatorial generation problems are of the form:

Given a graph X find one representative from each Aut(X)orbit of subsets of V(X).

Given a permutation group $G \subseteq \text{Sym}(\Omega)$ find one representative from each *G*-orbit of subsets of Ω .

Use nauty/Traces in the first case, or the GAP functions SmallestImageSet, MinimalImage or CanonicalImage in the second.

Programs such as nauty/Traces can take a *partitioned graph*, and *relabel it* in an isomorph-invariant fashion.

Two sets of the same size are *isomorphic* if the canonically labelled graphs are *identical*.

In addition, nauty/Traces gives the *orbits* of $Aut(\Gamma)_X$, i.e., the automorphisms of Γ that fix X.

In addition, nauty/Traces gives the *orbits* of $\operatorname{Aut}(\Gamma)_X$, i.e., the automorphisms of Γ that fix X.

In particular, this allows us to identify a *particular orbit* of $Aut(\Gamma)_X$ in a *labelling-independent* way—this is the *special orbit*.

A *simple binary matroid* is a subset $B \subseteq (\mathbb{Z}_2^n)^*$.

For example,

 $K_4 = \{001, 010, 011, 100, 101, 110\}$

Two binary matroids B_1 and B_2 are isomorphic if there is an invertible matrix $A \in GL(n, 2)$ such that $AB_1 = B_2$.

A catalogue of *all binary matroids* requires one representative of each GL(n, 2)-orbit on subsets of $(\mathbb{Z}_2^n)^*$.

Construct the point/hyperplane incidence graph Γ of PG(n - 1, 2)

Hyperplanes

Points

This has automorphism group $GL(n, 2) : C_2$.

Construct the point/hyperplane incidence graph Γ of PG(n - 1, 2)

Hyperplanes

Points

This has automorphism group $GL(n, 2) : C_2$.

Rank	Number
3	10
4	46
5	1372
6	475499108
7	1038397981840994509577948
8	10825608503765473087803384381127710579846422820261084889808

This is A000613 "*Number of equivalence classes of boolean functions*" in Sloane's OEIS, the low A-number reflecting the fundamental nature of this sequence.

45ACC @ UWA : DEC 11 – DEC 15

https://45acc.github.io.

Water is good, air is better, but sunlight is best of all —Arnold Rikli, Bled.