
EVERY ONE A WINNER: AN INTRODUCTION

TO ORDERLY ALGORITHMS

Gordon Royle

Centre for the Mathematics of Symmetry & Computation
School of Mathematics & Statistics
The University of Western Australia

June 2023



KRANJSKA GORA TO PERTH



PERTH CITY (KANE ARTIE PHOTOGRAPH)



UWA



RONALD C READ (1924 – 2019)

In February 1988, I walked into the forbidding UWaterloo Math and
Computer Building† to start a short postdoc with Ron Read.

He was a true polymath, not only a brilliant mathematician and witty
author, but a talented musician and composer, a lover of puzzles and
an enthusiastic early adopter of computational tools in graph theory.

†Architect’s motto: we put the “brutal” into “brutalist architecture”



LISTS, CATALOGUES AND CENSUSES

For hundreds—even thousands—of years, mathematicians and others
have created databases of interesting mathematical objects.

▶ Numbers (prime)
▶ Squares (Latin, magic)
▶ Knots
▶ Matroids
▶ Groups (permutation,

abstract)
▶ and of course . . . graphs

All science is either physics or stamp-collecting
— Ernest Rutherford



GRAPHS

Graph-collecting seems to have started with Isadore Kagno (1946).†

Amer. J. Math 1946

Cameron, Colbourn, Read, Wormald

J. Graph Theory 1985

†Unfortunately he missed a graph in this list.



CUBIC GRAPHS

A cubic graph is one where each vertex has exactly three neighbours.
Many deep problems in graph theory can be reduced to cubic graphs.

▶ 1966 10/12 vertices (Balaban)
▶ 1974 12 vertices (Petrenjuk, Petrenjuk)
▶ 1976 14 vertices (Bussemaker et al.)
▶ 1976 18 vertices (Faradz̆ev)
▶ 1984 20 vertices (McKay and Royle)
▶ 1992 24 vertices (Brinkmann)
▶ 1998 24 vertices (Meringer)
▶ etc.

de Vries, 1891

Brinkmann, Goedgebeur, Van Cleemput, The history of the generation of cubic

graphs, International Journal of Chemical Modeling, 2013.



CONSTRUCTING DATABASES

Many reasons to construct databases of small combinatorial objects.

▶ Direct search for examples and counterexamples
▶ Gaining insight by studying small-case behaviour
▶ Dealing with low-level junk in exact structural results

. . . two infinite families and five exceptional examples . . .
▶ To be integrated into computer algebra systems

g := SmallGroup(512,10000000);

You can also collect butterflies and make many observations. If you like
butterflies, that’s fine; but such work must not be confounded with re-
search, which is concerned to discover explanatory principles (Chomsky).



THE ISOMORPHISM PROBLEM

Straightforward attempts to construct databases of graphs will usually
construct many isomorphic copies of each graph.

Isomorphic graphs are structurally identical so this just represents
unnecessary duplication.

So a database should contain exactly one graph from each
isomorphism class.

RUNNING EXAMPLE
Construct the graphs on 4 vertices.



ALL GRAPHS ON 4 VERTICES (THE HAYSTACK)



ALL GRAPHS ON 4 VERTICES (THE HAYSTACK)



ALL GRAPHS ON 4 VERTICES (THE HAYSTACK)



ALL GRAPHS ON 4 VERTICES (THE HAYSTACK)



ISOMORPHISM (IN THEORY)

The decision problem

GRAPH ISOMORPHISM

Instance: Graphs G and H
Question: Is G isomorphic to H?

is in the complexity class NP because if you are given the bijection it
is easy to confirm that it is an isomorphism.

GRAPH ISOMORPHISM is not known to be in P and not known to be
NP-complete — it is a promising candidate for the elusive
“intermediate” computational problem that would show that P ̸= NP.



ISOMORPHISM (IN PRACTICE)

In practice, most graph isomorphism programs do not directly test
pairs of graphs, but instead canonically label individual graphs.

A canonical labelling function is a function

c : G → G

such that for all graphs G, H we have c(G) ∼= G and

G ∼= H ⇐⇒ c(G) = c(H).

A canonical labelling algorithm distinguishes one member of each
isomorphism class as the canonical representative of that class.



MAX-LEX CANONICAL FORM

Represent each graph in an isomorphism class as a binary string of
length

(n
2

)
indicating which edges are present, and take the graph with

the lexicographically largest string as the canonical representative.

0 1

23

01 02 03 12 13 23

1 1 1 0 0 0

0 1

23

01 02 03 12 13 23

1 0 0 1 1 0

0 1

23

01 02 03 12 13 23

0 1 0 1 0 1

0 1

23

01 02 03 12 13 23

0 0 1 0 1 1

✓

This canonical labelling is easy to understand, but hard to compute.



THE NEEDLES IN THE HAYSTACK



A NAIVE EDGE-ADDITION ALGORITHM

Initialise L0 be the list of all graphs on 4 vertices with no edges, and
then for each k ⩾ 0, create Lk+1 from Lk.

For each graph G ∈ Lk:
▶ Add a new edge to G in all possible ways,
▶ Canonically label each of the (k + 1)-edge graphs that arise,
▶ Add each canonically-labelled graph to Lk+1 if and only if it is

not already there.

Then Lk+1 contains—exactly once each—every canonically-labelled
graph on k + 1 edges.



CONSTRUCTING HUGE LISTS

Two factors limit the size of database that can reasonably be
generated by the naive algorithm.

▶ Time spent canonically labelling graphs
▶ Time/space spent comparing canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at
least

(N
2

)
equality tests.

If N is in the billions then this approach can never work.



EVERY ONE A WINNER

Ron Read (and independently I. A. Faradz̆ev) came up with the idea
of an algorithm that never performs pairwise comparisons.

They devised a way to structure a construction algorithm so that every
output is non-isomorphic to every other output—memorably
encapsulated by the phrase every one a winner.†

The fundamental idea is to perform the search entirely within the
subset of graphs that are canonically-labelled.

†Ron liked interesting paper titles such as “Is the null graph a pointless concept"
discussing the pros and cons of allowing a graph to have no vertices.



CANONICAL LABELLING

There are a number of programs available that can canonically label
large graphs, including nauty, Traces, bliss.

As a canonical labelling program can test graph isomorphism, it is as
hard or harder than graph isomorphism.

Performance is very graph-dependent, but I have used Traces to
canonically label a vertex-transitive 10-regular graph on 76 million
vertices.



A NAIVE ALGORITHM

Initialise L0 be the list of all graphs on 4 vertices with no edges, and
then for each k ⩾ 0, create Lk+1 from Lk.

For each graph G ∈ Lk:
▶ Add a new edge to G in all possible ways,
▶ Canonically label each of the (k + 1)-edge graphs that arise,
▶ Add each canonically-labelled graph to Lk+1 if and only if it is

not already there.

Then Lk+1 contains—exactly once each—every canonically-labelled
graph on k + 1 edges.



NAIVE ALGORITHM L2 → L3



NAIVE ALGORITHM L2 → L3



CONSTRUCTING HUGE LISTS

Two factors limit the size of database that can reasonably be
generated by the naive algorithm.

▶ Time spent canonically labelling graphs
▶ Time/space spent comparing canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at
least

(N
2

)
equality tests.

If N is in the billions then this approach can never work.



EVERY ONE A WINNER

Ron Read (and independently I. A. Faradz̆ev) came up with the idea
of an algorithm that never performs pairwise comparisons.

They devised a way to structure the construction algorithm so that
every output is non-isomorphic to every other output—memorably
encapsulated by the phrase every one a winner.

The fundamental idea is to perform the search entirely within the
subset of graphs that are canonically-labelled.



READ-FARADZ̆EV STYLE ORDERLY



THE ORDERLY ALGORITHM

For each graph G ∈ Lk:
▶ (Augment) Add a new last edge e to G in all possible ways.
▶ (Test) Accept G + e into Lk+1 if it is already canonically

labelled, and otherwise reject it.

Test for inclusion into Lk+1 becomes a single-graph test of canonicity.

It works because the recipe “delete the last edge” defines a tree on the
set of canonically-labelled graphs.

The algorithm explores / constructs the tree “upwards” starting from
the empty graph.



ADVANTAGES

The search tree can be traversed in a depth-first (backtrack) fashion,
dramatically reducing the total time and space required.

The search tree can be partitioned into arbitrarily many subtrees.

▶ Each part is totally independent of the others
▶ Each part can run on a different thread / core / chip or computer
▶ Graphs produced can be counted / examined and then discarded



HIERARCHICAL CANONICAL LABELLING

This works because the max-lex canonical labelling is hierarchical, so
the recipe “remove the last edge” produces a smaller
canonically-labelled graph.

110100 → 110000

In particular, every canonically labelled graph can be obtained by
augmenting a smaller canonically labelled graph.

Unfortunately the canonical labellings found by fast algorithms such
as nauty and Traces do not have this hierarchical property.



THE PROBLEM



CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical
labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

0

12

3 4

→ canonical labelling → 4

32

0 1

lowest edgespecial edgespecial edges

The recipe “delete a special edge” defines a tree on the set of
isomorphism classes.



CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical
labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

0

12

3 4

→ canonical labelling → 4

32

0 1
lowest edge

special edgespecial edges

The recipe “delete a special edge” defines a tree on the set of
isomorphism classes.



CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical
labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

0

12

3 4

→ canonical labelling → 4

32

0 1
lowest edgespecial edge

special edges

The recipe “delete a special edge” defines a tree on the set of
isomorphism classes.



CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical
labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

0

12

3 4

→ canonical labelling → 4

32

0 1
lowest edge

special edge

special edges

The recipe “delete a special edge” defines a tree on the set of
isomorphism classes.



CANONICAL SEARCH TREE



CANONICAL AUGMENTATION

The algorithm repeatedly augments a graph G (by adding an edge e)
and then accepts or rejects the augmented graph G + e.

KEY IDEA
Accept G + e if and only if e is a special edge of G + e.

So a graph will only be accepted if the augmentation was consistent
with the canonical search tree — if it was a canonical augmentation.

If G and H are non-isomorphic and G + e and H + f are both
accepted, then G + e is not isomorphic to H + f .



AVOIDING ISOMORPHS

When G is augmented we need to consider augmenting by every
non-edge.

If e and f are equivalent non-edges under the automorphism group of
G, then G + e and G + f will definitely be isomorphic.

As canonical labelling algorithms such as nauty/Traces compute
the automorphism group of a graph, the augmentation step can easily
be modified to avoid this.



CANONICAL CONSTRUCTION PATH ALGORITHM

Brendan McKay calls this the canonical construction path algorithm
(and prefers to reserve the word “orderly” for Read-style orderly).

To reiterate:
▶ The augmentation step produces pairwise non-isomorphic graphs

Graphs obtained by augmenting G are pairwise non-isomorphic.
▶ The canonicity check tests that the newly added edge is

(equivalent to) the special edge

Graphs obtained by augmenting G are not isomorphic to those
obtained by augmenting H.



MORE GENERALLY

Applies to far more than just graphs—if you have any set of
combinatorial objects and you can find:
▶ A isomorph-invariant canonical reduction from a larger object to

a smaller one.
▶ A reverse method of augmenting a smaller object to a set of

pairwise non-isomorphic larger ones.

then you can run the canonical construction path algorithm.

For example, Brendan’s graph generation program geng uses vertex
addition/deletion.



THE FIRST EXAMPLE

For example, my thesis† used a somewhat clunky ad-hoc CCP
algorithm to construct cubic graphs ear-by-ear.

According to Brinkmann, Goedgebeur and Van Cleemput

†heavily influenced by Brendan, of course



THE FIRST EXAMPLE

For example, my thesis† used a somewhat clunky ad-hoc CCP
algorithm to construct cubic graphs ear-by-ear.

According to Brinkmann, Goedgebeur and Van Cleemput

†heavily influenced by Brendan, of course



THE FIRST EXAMPLE

For example, my thesis† used a somewhat clunky ad-hoc CCP
algorithm to construct cubic graphs ear-by-ear.

According to Brinkmann, Goedgebeur and Van Cleemput

†heavily influenced by Brendan, of course



A COMMON SITUATION

Many combinatorial generation problems are of the form:

Given a graph X find one representative from each Aut(X)-
orbit of subsets of V(X).

Given a permutation group G ⊆ Sym(Ω) find one represen-
tative from each G-orbit of subsets of Ω.

Use nauty/Traces in the first case, or the GAP functions

SmallestImageSet, MinimalImage or CanonicalImage in the second.

Jump To End



CANONICAL LABELLING

Programs such as nauty/Traces can take a partitioned graph, and
relabel it in an isomorph-invariant fashion.

Two sets of the same size are isomorphic if the canonically labelled
graphs are identical.



THE SPECIAL ORBIT

In addition, nauty/Traces gives the orbits of Aut(Γ)X , i.e., the
automorphisms of Γ that fix X.

In particular, this allows us to identify a particular orbit of Aut(Γ)X in
a labelling-independent way—this is the special orbit.



THE SPECIAL ORBIT

In addition, nauty/Traces gives the orbits of Aut(Γ)X , i.e., the
automorphisms of Γ that fix X.

In particular, this allows us to identify a particular orbit of Aut(Γ)X in
a labelling-independent way—this is the special orbit.



BINARY MATROIDS

A simple binary matroid is a subset B ⊆ (Zn
2)

∗ .

For example,

K4 = {001, 010, 011, 100, 101, 110}

Two binary matroids B1 and B2 are isomorphic if there is an invertible
matrix A ∈ GL(n, 2) such that AB1 = B2.

A catalogue of all binary matroids requires one representative of each
GL(n, 2)-orbit on subsets of (Zn

2)
∗ .



WHAT GRAPH TO USE?

Construct the point/hyperplane incidence graph Γ of PG(n − 1, 2)

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Points

Hyperplanes

This has automorphism group GL(n, 2) : C2.



WHAT GRAPH TO USE?

Construct the point/hyperplane incidence graph Γ of PG(n − 1, 2)

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Points

Hyperplanes

This has automorphism group GL(n, 2) : C2.



TOTALS

Rank Number

3 10

4 46

5 1372

6 475499108

7 1038397981840994509577948

8 10825608503765473087803384381127710579846422820261084889808

This is A000613 “Number of equivalence classes of boolean
functions” in Sloane’s OEIS, the low A-number reflecting the
fundamental nature of this sequence.



45ACC @ UWA : DEC 11 – DEC 15

https://45acc.github.io.

Water is good, air is better, but sunlight is best of all —Arnold Rikli, Bled.

https://45acc.github.io

