Every One a Winner: An Introduction to Orderly Algorithms

Gordon Royle

Centre for the Mathematics of Symmetry \& Computation
School of Mathematics \& Statistics
The University of Western Australia

June 2023

Kranjska Gora to Perth

UWA

Ronald C READ (1924-2019)

In February 1988, I walked into the forbidding UWaterloo Math and Computer Building ${ }^{\dagger}$ to start a short postdoc with Ron Read.

He was a true polymath, not only a brilliant mathematician and witty author, but a talented musician and composer, a lover of puzzles and an enthusiastic early adopter of computational tools in graph theory.

[^0]
LISTS, CATALOGUES AND CENSUSES

For hundreds-even thousands-of years, mathematicians and others have created databases of interesting mathematical objects.

Mary G. Haseman: Amphicheiral Knots of Twelve Crossings.

- Numbers (prime)
- Squares (Latin, magic)
- Knots
- Matroids
- Groups (permutation, abstract)
- and of course ... graphs

All science is either physics or stamp-collecting

- Ernest Rutherford

GRAPHS

Graph-collecting seems to have started with Isadore Kagno (1946). ${ }^{\dagger}$

3. Graphs of Degree 6. There are eighteen admissible graphs,
$H_{1} \equiv N_{6}$, the complete 6 -point.
$H_{2} \equiv[a b, a c, a d, a e, a f, b c, b d, b e, b f, c d, c e, c f, d e, d f]$
$H_{3} \equiv[a b, a c, a d, a e, a f, b c, b d, b e, b f, c d, c e, c f, d e]$
$H_{4} \equiv[a c, a d, a e, a f, b c, b d, b e, b f, c e, c f, d e, d f, e f]$
$H_{5} \equiv[a c, a d, a e, a f, b c, b d, b e, b f, c e, c f, d e, d f]$
$H_{5} \equiv[a c, a d, a e, a f, b c, b d, b e, b f, c d, c f, d f, e f]$
$H_{7} \equiv[a b, a c, a e, a f, b d, b e, b f, c e, c f, d e, d f, e f]$
$H_{8}=[a b, a d, a e, a f, b c, b e, b f, c e, c f, d e, d f]$
$H_{5} \models[a b, a c, a e, a f, b d, b e, b f, c d, c f, d f, e f]$
$H_{10} \equiv[a d, a e, a f, b d, b e, b f, c d, c e, c f, d f, e f]$
$H_{11} \equiv[a b, a c, a d, a e, b c, b d, b f, c d, c e, d f, e f]$
$H_{12} \equiv[a d, a e, a f, b c, b e, b f, c e, c f, d e, d f, e f]$
$H_{13} \equiv[a d, a e, a f, b c, b e, b f, c e, c f, d e, d f]$
$H_{14} \equiv[a d, a e, a f, b c, b e, b f, c d, c e, d f, e f]$
$H_{15}=[a b, a e, a f, b c, b f, c d, c f, d e, d f, e f]$
$H_{15} \equiv[a d, a e, a f, b d, b e, b f, c d, c e, c f, d e]$
$H_{15} \models[a c, a d, a e, b d, b e, b f, c e, c f, d f]$
$H_{18}=[a d, a e, a f, b d, b e, b f, c d, c e, c f]$

Number of vertices	Number of graphs	Author	Date	Reference
$p=6$	156	I. Kagno	1946	[7]
$p=7$	1,044	D. W. Crowe, F. Harary	1952	Unpublished*
		B. R. Heap	1952	Unpublished
$p=8$	12,346	B. R. Heap	1969	[5]
$p=9$	274,668	H. H. Baker,	1974	[1]
		A. K. Dewdney, A. L. Szilard		
$p=10$	12,005,168	R.D. Cameron, C. J. Colbourn, R. C. Read, N.C. Wormald	1978-1981	This paper

Cameron, Colbourn, Read, Wormald
J. Graph Theory 1985

[^1]
Cubic Graphs

A cubic graph is one where each vertex has exactly three neighbours. Many deep problems in graph theory can be reduced to cubic graphs.

- 1966 10/12 vertices (Balaban)
- 197412 vertices (Petrenjuk, Petrenjuk)
- 197614 vertices (Bussemaker et al.)
- 197618 vertices (Faradžev)
- 198420 vertices (McKay and Royle)
- 199224 vertices (Brinkmann)
- 199824 vertices (Meringer)

- etc.
de Vries, 1891

Brinkmann, Goedgebeur, Van Cleemput, The history of the generation of cubic graphs, International Journal of Chemical Modeling, 2013.

Constructing databases

Many reasons to construct databases of small combinatorial objects.

- Direct search for examples and counterexamples
- Gaining insight by studying small-case behaviour
- Dealing with low-level junk in exact structural results
. . .two infinite families and five exceptional examples ...
- To be integrated into computer algebra systems
g := SmallGroup (512,10000000);

You can also collect butterflies and make many observations. If you like butterflies, that's fine; but such work must not be confounded with research, which is concerned to discover explanatory principles (Chomsky).

THE ISOMORPHISM PROBLEM

Straightforward attempts to construct databases of graphs will usually construct many isomorphic copies of each graph.

Isomorphic graphs are structurally identical so this just represents unnecessary duplication.

So a database should contain exactly one graph from each isomorphism class.

Running Example

Construct the graphs on 4 vertices.

All graphs on 4 VERTICES (THE HAYSTACK)

ISOMORPHISM (IN THEORY)

The decision problem
Graph Isomorphism
Instance: Graphs G and H
Question: Is G isomorphic to H ?
is in the complexity class NP because if you are given the bijection it is easy to confirm that it is an isomorphism.

Graph Isomorphism is not known to be in P and not known to be NP-complete - it is a promising candidate for the elusive "intermediate" computational problem that would show that $\mathrm{P} \neq \mathrm{NP}$.

ISOMORPHISM (IN PRACTICE)

In practice, most graph isomorphism programs do not directly test pairs of graphs, but instead canonically label individual graphs.

A canonical labelling function is a function

$$
c: \mathcal{G} \rightarrow \mathcal{G}
$$

such that for all graphs G, H we have $c(G) \cong G$ and

$$
G \cong H \Longleftrightarrow c(G)=c(H)
$$

A canonical labelling algorithm distinguishes one member of each isomorphism class as the canonical representative of that class.

Represent each graph in an isomorphism class as a binary string of length $\binom{n}{2}$ indicating which edges are present, and take the graph with the lexicographically largest string as the canonical representative.

This canonical labelling is easy to understand, but hard to compute.

The needles in the haystack

区

$$
\triangle \square \boxtimes \boxtimes \triangle \boxtimes
$$

$$
\because \% 1:: 1 \times:
$$

A NAIVE EDGE-ADDITION ALGORITHM

Initialise \mathcal{L}_{0} be the list of all graphs on 4 vertices with no edges, and then for each $k \geqslant 0$, create \mathcal{L}_{k+1} from \mathcal{L}_{k}.

For each graph $G \in \mathcal{L}_{k}$:

- Add a new edge to G in all possible ways,
- Canonically label each of the $(k+1)$-edge graphs that arise,
- Add each canonically-labelled graph to \mathcal{L}_{k+1} if and only if it is not already there.

Then \mathcal{L}_{k+1} contains-exactly once each-every canonically-labelled graph on $k+1$ edges.

Constructing huge lists

Two factors limit the size of database that can reasonably be generated by the naive algorithm.

- Time spent canonically labelling graphs
- Time/space spent comparing canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at least $\binom{N}{2}$ equality tests.

If N is in the billions then this approach can never work.

Every one a winner

Ron Read (and independently I. A. Faradžev) came up with the idea of an algorithm that never performs pairwise comparisons.

They devised a way to structure a construction algorithm so that every output is non-isomorphic to every other output-memorably encapsulated by the phrase every one a winner. ${ }^{\dagger}$

The fundamental idea is to perform the search entirely within the subset of graphs that are canonically-labelled.

[^2]
CANONICAL LABELLING

There are a number of programs available that can canonically label large graphs, including nauty, Traces, bliss.

As a canonical labelling program can test graph isomorphism, it is as hard or harder than graph isomorphism.

Performance is very graph-dependent, but I have used Traces to canonically label a vertex-transitive 10-regular graph on 76 million vertices.

A NAIVE ALGORITHM

Initialise \mathcal{L}_{0} be the list of all graphs on 4 vertices with no edges, and then for each $k \geqslant 0$, create \mathcal{L}_{k+1} from \mathcal{L}_{k}.

For each graph $G \in \mathcal{L}_{k}$:

- Add a new edge to G in all possible ways,
- Canonically label each of the $(k+1)$-edge graphs that arise,
- Add each canonically-labelled graph to \mathcal{L}_{k+1} if and only if it is not already there.

Then \mathcal{L}_{k+1} contains-exactly once each-every canonically-labelled graph on $k+1$ edges.

NAIVE ALGORITHM $\mathcal{L}_{2} \rightarrow \mathcal{L}_{3}$

区

ロロ区ヌロ』

ムレスヌスNェヌワスヌカヌロメ

$\because \% 1:: 1 .: 3$

NAIVE ALGORITHM $\mathcal{L}_{2} \rightarrow \mathcal{L}_{3}$

\boxtimes

ロロ区ヌロヌ

$\because \% 1: 1.1$.

Constructing huge lists

Two factors limit the size of database that can reasonably be generated by the naive algorithm.

- Time spent canonically labelling graphs
- Time/space spent comparing canonically-labelled graphs

Although equality checks are very quick, a list of N graphs requires at least $\binom{N}{2}$ equality tests.

If N is in the billions then this approach can never work.

Every one a winner

Ron Read (and independently I. A. Faradžev) came up with the idea of an algorithm that never performs pairwise comparisons.

They devised a way to structure the construction algorithm so that every output is non-isomorphic to every other output-memorably encapsulated by the phrase every one a winner.

The fundamental idea is to perform the search entirely within the subset of graphs that are canonically-labelled.

READ-FARADZ̆EV STYLE ORDERLY

THE ORDERLY ALGORITHM

For each graph $G \in \mathcal{L}_{k}$:

- (Augment) Add a new last edge e to G in all possible ways.
- (Test) Accept $G+e$ into \mathcal{L}_{k+1} if it is already canonically labelled, and otherwise reject it.

Test for inclusion into \mathcal{L}_{k+1} becomes a single-graph test of canonicity.
It works because the recipe "delete the last edge" defines a tree on the set of canonically-labelled graphs.

The algorithm explores / constructs the tree "upwards" starting from the empty graph.

AdVANTAGES

The search tree can be traversed in a depth-first (backtrack) fashion, dramatically reducing the total time and space required.

The search tree can be partitioned into arbitrarily many subtrees.

- Each part is totally independent of the others
- Each part can run on a different thread / core / chip or computer
- Graphs produced can be counted / examined and then discarded

Hierarchical canonical labelling

This works because the max-lex canonical labelling is hierarchical, so the recipe "remove the last edge" produces a smaller canonically-labelled graph.

$$
110100 \rightarrow 110000
$$

In particular, every canonically labelled graph can be obtained by augmenting a smaller canonically labelled graph.

Unfortunately the canonical labellings found by fast algorithms such as nauty and Traces do not have this hierarchical property.

THE PROBLEM

CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

CANONICAL DESTRUCTION

Brendan McKay explained how to use an arbitrary canonical labelling function in such an algorithm.

He focusses on isomorphism classes not individual graphs.

The recipe "delete a special edge" defines a tree on the set of isomorphism classes.

CANONICAL SEARCH TREE

CANONICAL AUGMENTATION

The algorithm repeatedly augments a graph G (by adding an edge e) and then accepts or rejects the augmented graph $G+e$.

Key IdeA
Accept $G+e$ if and only if e is a special edge of $G+e$.

So a graph will only be accepted if the augmentation was consistent with the canonical search tree - if it was a canonical augmentation.

If G and H are non-isomorphic and $G+e$ and $H+f$ are both accepted, then $G+e$ is not isomorphic to $H+f$.

Avoiding isomorphs

When G is augmented we need to consider augmenting by every non-edge.

If e and f are equivalent non-edges under the automorphism group of G, then $G+e$ and $G+f$ will definitely be isomorphic.

As canonical labelling algorithms such as nauty / Traces compute the automorphism group of a graph, the augmentation step can easily be modified to avoid this.

CANONICAL CONSTRUCTION PATH ALGORITHM

Brendan McKay calls this the canonical construction path algorithm (and prefers to reserve the word "orderly" for Read-style orderly).

To reiterate:

- The augmentation step produces pairwise non-isomorphic graphs Graphs obtained by augmenting G are pairwise non-isomorphic.
- The canonicity check tests that the newly added edge is (equivalent to) the special edge
Graphs obtained by augmenting G are not isomorphic to those obtained by augmenting H.

More generally

Applies to far more than just graphs-if you have any set of combinatorial objects and you can find:

- A isomorph-invariant canonical reduction from a larger object to a smaller one.
- A reverse method of augmenting a smaller object to a set of pairwise non-isomorphic larger ones.
then you can run the canonical construction path algorithm.
For example, Brendan's graph generation program geng uses vertex addition/deletion.

```
00013890@DEP5̄2010 näuty27r1 % geng -u }1
>A geng -d0D9 n=10 e=0-45
>Z 12005168 graphs generated in 3.36 sec
```


The first example

For example, my thesis ${ }^{\dagger}$ used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs ear-by-ear.

[^3]
The first example

For example, my thesis ${ }^{\dagger}$ used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs ear-by-ear.

[^4]
The first example

For example, my thesis ${ }^{\dagger}$ used a somewhat clunky ad-hoc CCP algorithm to construct cubic graphs ear-by-ear.

According to Brinkmann, Goedgebeur and Van Cleemput

This method already contains all ingredients that make later algorithms using the canonical construction path method so efficient.

[^5]
A COMMON SITUATION

Many combinatorial generation problems are of the form:
Given a graph X find one representative from each $\operatorname{Aut}(X)$ orbit of subsets of $V(X)$.

Given a permutation group $G \subseteq \operatorname{Sym}(\Omega)$ find one representative from each G-orbit of subsets of Ω.

Use nauty/Traces in the first case, or the GAP functions
SmallestImageSet, MinimalImage or CanonicalImage in the second.

CANONICAL LABELLING

Programs such as nauty/Traces can take a partitioned graph, and relabel it in an isomorph-invariant fashion.

Two sets of the same size are isomorphic if the canonically labelled graphs are identical.

THE SPECIAL ORBIT

In addition, nauty/Traces gives the orbits of $\operatorname{Aut}(\Gamma)_{X}$, i.e., the automorphisms of Γ that fix X.

The special orbit

In addition, nauty/Traces gives the orbits of $\operatorname{Aut}(\Gamma)_{X}$, i.e., the automorphisms of Γ that fix X.

In particular, this allows us to identify a particular orbit of $\operatorname{Aut}(\Gamma)_{X}$ in a labelling-independent way-this is the special orbit.

Binary Matroids

A simple binary matroid is a subset $B \subseteq\left(\mathbb{Z}_{2}^{n}\right)^{*}$.
For example,

$$
K_{4}=\{001,010,011,100,101,110\}
$$

Two binary matroids B_{1} and B_{2} are isomorphic if there is an invertible matrix $A \in \operatorname{GL}(n, 2)$ such that $A B_{1}=B_{2}$.

A catalogue of all binary matroids requires one representative of each $\operatorname{GL}(n, 2)$-orbit on subsets of $\left(\mathbb{Z}_{2}^{n}\right)^{*}$.

WHAT GRAPH TO USE?

Construct the point/hyperplane incidence graph Γ of $\mathrm{PG}(n-1,2)$

This has automorphism group $\operatorname{GL}(n, 2): C_{2}$.

What graph to use?

Construct the point/hyperplane incidence graph Γ of $\mathrm{PG}(n-1,2)$

This has automorphism group $\operatorname{GL}(n, 2): C_{2}$.

Totals

Rank	Number
3	10
4	46
5	1372
6	1038397981840994509577948
7	10825608503765473087803384381127710579846422820261084889808
8	

This is A000613 "Number of equivalence classes of boolean functions" in Sloane's OEIS, the low A-number reflecting the fundamental nature of this sequence.

45ACC @ UWA : DEC 11 - DEC 15

https://45acc.github.io.

Water is good, air is better, but sunlight is best of all -Arnold Rikli, Bled.

[^0]: ${ }^{\dagger}$ Architect's motto: we put the "brutal" into "brutalist architecture"

[^1]: ${ }^{\dagger}$ Unfortunately he missed a graph in this list.

[^2]: ${ }^{\dagger}$ Ron liked interesting paper titles such as "Is the null graph a pointless concept" discussing the pros and cons of allowing a graph to have no vertices.

[^3]: ${ }^{\dagger}$ heavily influenced by Brendan, of course

[^4]: ${ }^{\dagger}$ heavily influenced by Brendan, of course

[^5]: ${ }^{\dagger}$ heavily influenced by Brendan, of course

