Vizing's Conjecture: different approaches

Csilla Bujtás

University of Ljubljana, Slovenia Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

SICGT'23

Csilla Bujtás (University of Ljubljana) Vizing's Conjecture: different approaches

SICGT'23 1 / 30

Basic definitions

 $G=\left(V(G),E(G)\right)$

- Open neighborhood $N_G(v)$: set of neighbors of a vertex v; $N_G(S) = \bigcup_{v \in S} N_G(v)$.
- Closed neighborhood: $N_G[v] = N_G(v) \cup \{v\}; N_G[S] = \bigcup_{v \in S} N_G[v].$
- Each vertex dominates itself and its neighbors. Dominating set $D \subseteq V(G)$: $N_G[D] = V(G)$.
- Domination number: minimum cardinality $\rightarrow \gamma(G)$.
- Packing $S \subseteq V(G)$: the closed neighborhoods of the vertices are pairwise disjoint.
- Packing number: minimum cardinality of a packing $\rightarrow \rho(G)$.

$$\rho(G) \le \gamma(G).$$

Cartesian product

• Cartesian product of two graphs:

- $V(G \Box H) = V(G) \times V(H);$
- Two vertices, (g, h) and (g', h') are adjacent if g = g' and $hh' \in E(H)$ or $gg' \in E(G)$ and h = h'.

Cartesian product

• *G*-fiber in $G \square H$: For a fixed $h \in V(H)$: $G^h = \{(x, h) : x \in V(G)\}.$

Cartesian product

• *H*-fiber in $G \square H$: For a fixed $h \in V(H)$: ${}^{g}H = \{(g, y) : y \in V(H)\}.$

Vizing's Conjecture

Vizing's Conjecture (1968)

For every two graphs G and H, it holds that

$\gamma(G \square H) \geq \gamma(G)\gamma(H).$

Csilla Bujtás (University of Ljubljana) Vizing's Conjecture: different approaches

SICGT'23 6 / 30

• The Cartesian product of two dominating sets is typically not enough to dominate $G \Box H$.

• For every two graphs:

```
\gamma(G \Box H) \le \min\{n_G \cdot \gamma(H), \gamma(G) \cdot n_H\}.
```

• Here, each vertex is dominated horizontally (i.e., inside a *G*-fiber):

• A subset is also a dominating set (now, some vertices are dominated only vertically):

Vizing's Conjecture: some related facts

Vizing's Conjecture (1968)

For every two graphs G and H, it holds that

 $\gamma(G \Box H) \geq \gamma(G)\gamma(H).$

• If *G*' is a spanning subgraph of *G* such that $\gamma(G') = \gamma(G)$, then for every graph *H*,

 $\gamma(G \, \Box \, H) \geq \gamma(G) \gamma(H) \quad \text{implies} \quad \gamma(G' \, \Box \, H) \geq \gamma(G') \gamma(H).$

Proof: The domination number of $G \square H$ cannot drop while deleting edges and obtain $G' \square H$.

$$\gamma(G'\,\Box\,H)\geq\gamma(G\,\Box\,H)\geq\gamma(G)\gamma(H)=\gamma(G')\gamma(H).$$

SICGT'23 10 / 30

Vizing's Conjecture: related observations

Vizing's Conjecture (1968)

For every two graphs G and H, it holds that

 $\gamma(G\,\square\,H) \geq \gamma(G)\gamma(H).$

• If *G*' is a spanning subgraph of *G* such that $\gamma(G') = \gamma(G)$, then for every graph *H*,

 $\gamma(G \Box H) \ge \gamma(G)\gamma(H)$ implies $\gamma(G' \Box H) \ge \gamma(G')\gamma(H)$.

• $\min\{n_G, n_H\} \le \gamma(G \Box H) \le \min\{\gamma(G) \cdot n_H, \gamma(H) \cdot n_G\}$ [El-Zahar, Pareek, 1991; Vizing, 1963]

イロト イボト イヨト イヨト 一日

Graphs satisfying Vizing's Conjecture

We say that a graph *G* satisfies Vizing's Conjecture if $\gamma(G \Box H) \ge \gamma(G)\gamma(H)$ is true for every graph *H*.

Graph classes which are proved to satisfy Vizing's Conjecture:

• chordal graphs

[Aharoni, Szabó, 2009]

- graphs with domination number $\gamma \leq 3$ [Barcalkin, German, 1979; Sun, 2004; Brešar, 2015]
- BG-graphs (e.g., trees) [Barcalkin, German, 1979]
- Type \mathcal{X} graphs

[Hartnell, Rall, 1994]

Weaker lower bounds on $\gamma(G \Box H)$

For every two graphs:

- $\gamma(G \Box H) \ge \frac{1}{2}\gamma(G)\gamma(H)$ [Clark, Suen, 2000]
- $\gamma(G \Box H) \ge \frac{1}{2}\gamma(G)\gamma(H) + \max\{\gamma(G), \gamma(H)\}$ [Zerbib, 2019]

For a claw-free graph *G* and an arbitrary *H*:

• $\gamma(G \Box H) \ge \frac{3}{4}\gamma(G)\gamma(H)$ [Brešar, Henning, 2020]

Projection

SICGT'23 14 / 30

<ロ> (四) (四) (三) (三) (三)

Projection

Csilla Bujtás (University of Ljubljana) Vizing's Conjecture: different approaches

SICGT'23 14 / 30

◆□▶ ◆□▶ ◆注≯ ◆注≯ ●注

Partition classes, blocks and cells

- Let $D_G = \{u_1, \ldots, u_k\}$ a minimum dominating set in *G*. ($k = \gamma(G)$)
- Choose a partition π_1, \ldots, π_k of V(G) such that $u_i \in \pi_i$ and $\pi_i \subseteq N[u_i]$ for every *i*.
- Block $\Pi_i = \pi_i \times H$.
- Cell $C_i^h = \pi_i \times \{h\}$ for $h \in V(H)$ and $1 \le i \le k$.

Decomposable graphs

• *G* is decomposable if there is a partition π_1, \ldots, π_k of V(G) s.t. each π_i induces a clique. $(k = \gamma(G))$ Lemma: Let G be a decomposable graph with a partition π_1, \ldots, π_k and $D \subseteq V(G)$. If π_1, \ldots, π_ℓ are the classes which are disjoint from *D* and $D \cap \bigcup_{i=\ell+1}^{\ell+t} \pi_i$ externally dominates $\bigcup_{i=1}^{\ell} \pi_i \Rightarrow$

$$|D \cap \bigcup_{i=\ell+1}^{\ell+t} \pi_i| \ge \ell + t.$$

Theorem (Barcalkin, German, 1979)

Every decomposable graph satisfies Vizing's Conjecture.

Proof: Project the vertices of a dominating set *D* onto $k = \gamma(G)$ copies of *H*. If a cell C_i^h contains some vertices from D, then one of them is projected to the vertex h in the i^{th} copy H_i . If a vertex is not dominated in a copy H_i , we can use the lemma and project a surplus vertex from another cell C_s^h to H_i . イロト イポト イヨト イヨト 二日 Csilla Bujtás (University of Ljubljana) SICGT'23 16/30

Theorem (Barcalkin, German, 1979)

Every decomposable graph satisfies Vizing's Conjecture.

- If *G*' is a spanning subgraph of a decomposable graph *G* such that $\gamma(G') = \gamma(G)$ (*G*' is a BG-graph), then *G*' satisfies Vizing's Conjecture.
- The following graphs satisfy Vizing's Conjecture:
 - graphs with $\gamma(G) \leq 2$,
 - graphs with $\gamma(G) = \rho(G)$ (e.g., trees).

Graphs of Type \mathcal{X}

- *G* is of Type \mathcal{X} if V(G) can be partitioned into $SC \cup BC \cup C \cup S$ such that
 - *SC*: induces a clique where every vertex has a neighbor outside *SC*;
 - $BC = B_1 \cup \cdots \cup B_t$ where every B_i is a clique with a vertex b_i , $N[b_i] = B_i$;
 - $C = C_1 \cup \cdots \cup C_m$ where each C_i is a clique;
 - $S = S_1 \cup \cdots \cup S_k$ where every S_i is a "star-like" graph with a vertex s_i , $N[s_i] = S_i$, and S_i satisfies some further conditions;
 - There are no edges between *C* and *S*; and

•
$$\gamma(G) = 1 + t + m + k$$
.

Theorem (Hartnell, Rall, 1995)

Every graph of Type \mathcal{X} satisfies Vizing's Conjecture.

Consequences: Vizing's Conjecture is true for all graphs with $\gamma(G) = \rho(G) + 1$; and for spanning subgraphs of Type \mathcal{X} graphs if the domination number is the same.

イロト イポト イヨト イヨト 一日

SICGT'23

18/30

- $D_G = \{u_1, \ldots, u_k\}$: a minimum dominating set in G $(k = \gamma(G))$;
- π_1, \ldots, π_k : a partition of V(G) as before;
- blocks Π_i , cells C_i^h ;
- Fix a (minimum) dominating set D in $G \square H$.

- $D_G = \{u_1, \ldots, u_k\}$: a minimum dominating set in G ($k = \gamma(G)$);
- π_1, \ldots, π_k : a partition of V(G) as before;
- blocks Π_i , cells C_i^h ;
- Fix a minimum dominating set D in $G \square H$.
- A cell is blue if its every vertex is dominated horizontally.

- *B*: # of blue cells in $G \square H$;
- B_i : # of blue cells in block Π_i ;
- B_h : # of blue cells in fiber G^h .

•
$$B = \sum_{i=1}^{k} B_i = \sum_{h \in V(H)} B_h$$

A D > A B > A

- *B*: # of blue cells in $G \square H$;
- B_i : # of blue cells in block Π_i ; B_h : # of blue cells in fiber G^h .

•
$$B = \sum_{i=1}^k B_i = \sum_{h \in V(H)} B_h.$$

- In a fiber G^h : $B_h \leq |D \cap G^h| \Rightarrow B \leq |D|$.
- In a block Π_i : $B_i \ge \gamma(H) |D \cap \Pi_i| \Rightarrow B \ge k\gamma(H) |D|$. $|D| \ge B \ge k\gamma(H) - |D|$

Theorem (Clark, Suen, 2000)

It holds for every two graphs G and H:

$$\gamma(G \Box H) \ge \frac{1}{2}\gamma(G)\gamma(H).$$

More colors

- A cell C_i^h is blue: $C_i^h \cap D \neq \emptyset$ and \forall vertex of C_i^h is dominated horizontally.
- A cell C_i^h is yellow: if $C_i^h \cap D \neq \emptyset$ and not every vertex of C_i^h is dominated horizontally.
- A cell C_i^h is white: if $C_i^h \cap D = \emptyset$ and \exists a vertex which is dominated vertically.
- A cell $C_i^{\bar{h}}$ is red: if $C_i^h \cap D = \emptyset$ and no vertex is dominated vertically.

- *B*: # of blue cells in total;
 - B_i : # of blue cells in the block Π_i ;

 B_h : # of blue cells in the fiber G^h ;

- Similarly, for the number of yellow, white, and red cells: *Y*, *Y*_{*i*}, *Y*_{*h*}, *W*, . . .
- The vertices of the dominating set *D* are colored with blue and yellow according to the color of the cell.
- *b*: # of blue vertices in total; *y*: # of yellow vertices in total.

Lemma (Brešar, Hartnell, Henning, Kuenzel, Rall, 2021)

0 • 0 0 Н 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 G u_2 u_1

▲ E → E → Q < C
SICGT'23 25 / 30

Alternative proof for the Clark-Suen theorem:

$$\begin{split} \gamma(G)\gamma(H) &\leq B+Y+R \leq = b+y+Y \\ &= |D|+Y \leq 2\gamma(G\,\Box\,H). \end{split}$$

A strengthening of the Clark-Suen theorem:

Theorem (Brešar, Hartnell, Henning, Kuenzel, Rall, 2021)

$$\gamma(G \Box H) \ge \frac{1}{2}\gamma(G)\gamma_t(H).$$

Csilla Bujtás (University of Ljubljana) Vizing's Conjecture: different approaches

SICGT'23 26 / 30

A different domination in Cartesian products

Definition

Let *G* and *H* be graphs and *C* a fixed minimum dominating set in *G*. We say that a vertex (x, y) *C*-dominates (x', y') in $G \Box H$ if

- (x, y) = (x', y'), or
- (x, y) and (x', y') are adjacent in $G \square H$, or
- $x \in C$ and both $xx' \in E(G)$ and $yy' \in E(H)$ hold.

The smallest size of a set *D* that *C*-dominates $G \Box H$ is the *C*-domination number $\gamma(C, G \Box H)$ of the Cartesian product.

You may also say that, if $x \in C$, then (x, y) dominates $N_G[x] \times N_H[y]$ in $G \square H$.

Csilla Bujtás (University of Ljubljana) Vizing's Conjecture: different approaches

SICGT'23 28 / 30

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Some facts and questions

• Fact: If *C* and *D* are minimum dominating sets in *G* and *H*, resp., then $C \times D$ is a *C*-dominating set in $G \square H$.

$$\gamma(C, G \Box H) \le \gamma(G)\gamma(H).$$

- Fact: $\gamma(G \Box H) \ge \gamma(C, G \Box H)$.
- Question: Is it true that for every line graph *G* there exists a minimum dominating set *C* such that for every graph *H*

$$\gamma(C, G \Box H) = \gamma(G)\gamma(H)$$
 holds ?

If the answer is YES, then line graphs satisfy Vizing's Conjecture.

• The same question relates to other graph classes.

Thank you for your attention!